
Force.com SOQL and SOSL
Reference

Version 38.0, Winter ’17

 @salesforcedocs
Last updated: November 10, 2016

https://twitter.com/salesforcedocs


© Copyright 2000–2016 salesforce.com, inc. All rights reserved. Salesforce is a registered trademark of salesforce.com, inc.,
as are other names and marks. Other marks appearing herein may be trademarks of their respective owners.



CONTENTS

Chapter 1: Introduction to SOQL and SOSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 2: Salesforce Object Query Language (SOQL) . . . . . . . . . . . . . . . . . . . . . . . . . 3

Typographical Conventions in This Document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Quoted String Escape Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Reserved Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Alias Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
SOQL SELECT Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Condition Expression Syntax (WHERE Clause) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
fieldExpression Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
USING SCOPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
ORDER BY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
LIMIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
OFFSET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Update an Article’s Keyword Tracking with SOQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Update an Article Viewstat with SOQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
WITH filteringExpression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
GROUP BY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
HAVING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
TYPEOF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
FORMAT () . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
FOR VIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
FOR REFERENCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
FOR UPDATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Aggregate Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Date Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Querying Currency Fields in Multi-currency Orgs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Example SELECT Clauses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Relationship Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Understanding Relationship Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Using Relationship Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Understanding Relationship Names, Custom Objects, and Custom Fields . . . . . . . . . . . 57
Understanding Query Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Lookup Relationships and Outer Joins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Identifying Parent and Child Relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Understanding Polymorphic Keys and Relationships . . . . . . . . . . . . . . . . . . . . . . . . . 63
Understanding Relationship Query Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Using Relationship Queries with History Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Using Relationship Queries with Data Category Selection Objects . . . . . . . . . . . . . . . . . 67



Using Relationship Queries with the Partner WSDL . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Change the Batch Size in Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
SOQL Limits on Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

SOQL with Archived Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Syndication Feed SOQL and Mapping Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Location-Based SOQL Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Chapter 3: Salesforce Object Search Language (SOSL) . . . . . . . . . . . . . . . . . . . . . . . . 77

Typographical Conventions in This Document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
SOSL Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
SOSL Limits on External Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
SOSL Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Example Text Searches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
convertCurrency() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
FIND {SearchQuery} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
FORMAT() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
IN SearchGroup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
LIMIT n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
OFFSET n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
ORDER BY Clause . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
RETURNING FieldSpec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
toLabel(fields) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Update an Article’s Keyword Tracking with SOSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Update an Article’s Viewstat with SOSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
WHERE conditionExpression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
WITH DATA CATEGORY DataCategorySpec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
WITH DivisionFilter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
WITH METADATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
WITH NETWORK NetworkIdSpec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
WITH PricebookId . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
WITH SNIPPET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Contents



CHAPTER 1 Introduction to SOQL and SOSL

If you’ve built a custom UI for Salesforce, you can use the Salesforce Object Query Language (SOQL) and
Salesforce Object Search Language (SOSL) APIs to search your organization’s Salesforce data.

This guide explains when to use SOQL and SOSL and outlines the syntax, clauses, limits, and performance
considerations for both languages. It is intended for developers and assumes knowledge and experience
working with APIs to interact with data.

Deciding Which to Use

A SOQL query is the equivalent of a SELECT  SQL statement and searches the org database. SOSL is a
programmatic way of performing a text-based search against the search index.

Whether you use SOQL or SOSL depends on whether you know which objects or fields you want to
search, plus other considerations.

Use SOQL when you know which objects the data resides in, and you want to:

• Retrieve data from a single object or from multiple objects that are related to one another.

• Count the number of records that meet specified criteria.

• Sort results as part of the query.

• Retrieve data from number, date, or checkbox fields.

Use SOSL when you don’t know which object or field the data resides in, and you want to:

• Retrieve data for a specific term that you know exists within a field. Because SOSL can tokenize
multiple terms within a field and build a search index from this, SOSL searches are faster and can
return more relevant results.

• Retrieve multiple objects and fields efficiently where the objects might or might not be related to
one another.

• Retrieve data for a particular division in an organization using the divisions feature.

• Retrieve data that’s in Chinese, Japanese, Korean, or Thai. Morphological tokenization for CJKT terms
helps ensure accurate results.

Performance Considerations

To increase the efficiency of queries and searches, keep in mind:

• Both SOQL WHERE  filters and SOSL search queries can specify text you should look for. When a
given search can use either language, SOSL is generally faster than SOQL if the search expression
uses a CONTAINS  term.

• SOSL can tokenize multiple terms within a field (for example, multiple words separated by spaces)
and builds a search index off this. If you’re searching for a specific distinct term that you know exists
within a field, you might find SOSL is faster than SOQL for these searches. For example, you might
use SOSL if you were searching for “John” against fields that contained values like “Paul and John
Company”.

1



• Keep the number of fields to be searched or queried to a minimum. Using a large number of fields
leads to a large number of permutations, which can be difficult to tune.

For more information, see Best Practices for Deployments with Large Data Volumes.

Sending Queries

Use the REST and SOAP protocols to execute queries and searches:

• Query  (REST) and query() (SOAP)—Executes a SOQL query against the specified object and
returns data that matches the specified criteria.

• Search  (REST) and search() (SOAP)—Executes a SOSL text string search against your org’s
data.

More resources to perform other common search tasks, like auto-suggesting records, articles, and queries,
are also available.

In Apex, you can use SOQL or SOSL on the fly by surrounding the statement in square brackets. You can
also use a Search Class to perform dynamic SOSL queries and a Search Namespace for getting search
results and suggestion results.

Note: Apex requires that you surround SOQL and SOSL statements with square brackets to use
them on the fly. You can use Apex script variables and expressions when preceded by a colon (:).

2

Introduction to SOQL and SOSL

https://developer.salesforce.com/docs/atlas.en-us.204.0.salesforce_large_data_volumes_bp.meta/salesforce_large_data_volumes_bp/


CHAPTER 2 Salesforce Object Query Language (SOQL)

Use the Salesforce Object Query Language (SOQL) to search your organization’s Salesforce data for
specific information. SOQL is similar to the SELECT statement in the widely used Structured Query
Language (SQL) but is designed specifically for Salesforce data.

In this chapter ...

• Typographical
Conventions in This
Document With SOQL, you can construct simple but powerful query strings in the following environments:

• In the queryString parameter in the query() call• Quoted String Escape
Sequences • In Apex statements

• Reserved Characters • In Visualforce controllers and getter methods
• Alias Notation • In the Schema Explorer of the Force.com IDE
• SOQL SELECT Syntax Similar to the SELECT command in Structured Query Language (SQL), SOQL allows you to specify the

source object (such as Account), a list of fields to retrieve, and conditions for selecting rows in the source
object.

• Relationship Queries

• Change the Batch
Size in Queries

Note: SOQL doesn’t support all advanced features of the SQL SELECT command. For example,
you can’t use SOQL to perform arbitrary join operations, use wildcards in field lists, or use calculation
expressions.

• SOQL Limits on
Objects

• Syndication Feed
SOQL and Mapping
Syntax

SOQL uses the SELECT statement combined with filtering statements to return sets of data, which can
optionally be ordered:

SELECT one or more fields
FROM an object
WHERE filter statements and, optionally, results are ordered

• Location-Based SOQL
Queries

For example, the following SOQL query returns the value of the Id  and Name  field for all Account
records if the value of Name  is Sandy:

SELECT Id, Name
FROM Account
WHERE Name = 'Sandy'

Note: Apex requires that you surround SOQL and SOSL statements with square brackets to use
them on the fly. You can use Apex script variables and expressions when preceded by a colon (:).

For a complete description of the syntax, see SOQL SELECT Syntax.

When to Use SOQL

Use SOQL when you know which objects the data resides in, and you want to:

• Retrieve data from a single object or from multiple objects that are related to one another.

• Count the number of records that meet specified criteria.

• Sort results as part of the query.

• Retrieve data from number, date, or checkbox fields.

3



Note:  With archived data and BigObjects, you can use only some SOQL features. For more
information, see SOQL with Archived Data on page 71.

4

Salesforce Object Query Language (SOQL)



Typographical Conventions in This Document

This SOQL reference uses custom typographical conventions.

DescriptionConvention

Courier font indicates items that you should type as shown. In a syntax statement,
Courier font also indicates items that you should type as shown, except for curly

SELECT Name FROM Account

braces, square brackets, ellipsis, and other typographical markers explained in this
table.

Italics represent a variable or placeholder. You supply the actual value.SELECT fieldname FROM
objectname

Curly braces group elements to remove ambiguity. For example, in the clause
UPDATE {TRACKING|VIEWSTAT}[,...], the curly braces indicate that the

{}

pipe shows a choice between TRACKING  and VIEWSTAT  after UPDATE, rather
than a choice between UPDATE TRACKING  and VIEWSTAT.

The pipe character separates alternate elements. For example, in the clause UPDATE
{TRACKING|VIEWSTAT}[,...], the |  character indicates that you can use
either TRACKING  or VIEWSTAT after UPDATE.

|

Square brackets indicate an optional element. For example, [LIMIT rows]
means that you can specify zero or one LIMIT  clause. Don’t type square brackets

[]

as part of a SOQL command. Nested square brackets indicate elements that are
optional and can only be used if the parent optional element is present. For example,
in the clause [ORDER BY fieldOrderByList [ASC | DESC] [NULLS
{FIRST | LAST}]] , ASC, DESC, or the NULLS  clause cannot be used
without the ORDER BY  clause.

Square brackets containing an ellipsis indicate that the preceding element can be
repeated up to the limit for the element. If a comma is also present, the repeated

[...]  and [,...]

elements must be separated by commas. If the element is a list of choices grouped
with curly braces, you can use items from the list in any order. For example, in the
clause UPDATE {TRACKING|VIEWSTAT}[,...], the [,...]  indicates
that you can use TRACKING, VIEWSTAT, or both:

UPDATE TRACKING

UPDATE VIEWSTAT

UPDATE TRACKING, VIEWSTAT

Quoted String Escape Sequences

SOQL defines several escape sequences that are valid in queries so that you can include special characters in your queries. You can escape
new lines, carriage returns, tabs, quotes, and more. The escape character for SOQL is the backslash (\) character.

You can use the following escape sequences with SOQL:

5

Typographical Conventions in This DocumentSalesforce Object Query Language (SOQL)



MeaningSequence

New line\n  or \N

Carriage return\r  or \R

Tab\t  or \T

Bell\b  or \B

Form feed\f  or \F

One double-quote character\"

One single-quote character\'

Backslash\\

Matches a single underscore character ( _ )LIKE expression only: \_

Matches a single percent sign character ( % )LIKE expression only:\%

If you use a backslash character in any other context, an error occurs.

Escaped Character Examples
SELECT Id FROM Account WHERE Name LIKE 'Ter%'

Select all accounts whose name begins with the three character sequence 'Ter'.

SELECT Id FROM Account WHERE Name LIKE 'Ter\%'
Select all accounts whose name exactly matches the four character sequence 'Ter%'.

SELECT Id FROM Account WHERE Name LIKE 'Ter\%%'
Select all accounts whose name begins with the four character sequence 'Ter%'

Reserved Characters

The single quote (’) and backlash (\) characters are reserved in SOQL queries and must be preceded by a backslash to be properly
interpreted.

Reserved characters, if specified in a SELECT  clause as a literal string (between single quotes), must be escaped (preceded by the
backslash \ character) in order to be properly interpreted. An error occurs if you do not precede reserved characters with a backslash.

The following characters are reserved:

' (single quote)
\ (backslash)

For example, to query the Account Name  field for “Bob's BBQ,” use the following SELECT statement:

SELECT Id
FROM Account
WHERE Name LIKE 'Bob\'s BBQ'

6

Reserved CharactersSalesforce Object Query Language (SOQL)



Alias Notation

You can use alias notation in SELECT queries.

SELECT count()
FROM Contact c, c.Account a
WHERE a.name = 'MyriadPubs'

To establish the alias, first identify the object, in this example a contact, and then specify the alias, in this case “c.” For the rest of the
SELECT statement, you can use the alias in place of the object or field name.

The following are SOQL keywords that can’t be used as alias names: AND, ASC, DESC, EXCLUDES, FIRST, FROM,
GROUP, HAVING, IN, INCLUDES, LAST, LIKE, LIMIT, NOT, NULL, NULLS, OR, SELECT, WHERE,
WITH

SOQL SELECT Syntax

SOQL query syntax consists of a required SELECT statement followed by one or more optional clauses, such as TYPEOF, WHERE,
WITH, GROUP BY, and ORDER BY.

The SOQL SELECT statement uses the following syntax:

SELECT fieldList [subquery][...]
[TYPEOF typeOfField whenExpression[...] elseExpression END][...]
FROM objectType[,...]

[USING SCOPE filterScope]
[WHERE conditionExpression]
[WITH [DATA CATEGORY] filteringExpression]
[GROUP BY {fieldGroupByList|ROLLUP (fieldSubtotalGroupByList)|CUBE
(fieldSubtotalGroupByList)}

[HAVING havingConditionExpression] ]
[ORDER BY fieldOrderByList {ASC|DESC} [NULLS {FIRST|LAST}] ]
[LIMIT numberOfRowsToReturn]
[OFFSET numberOfRowsToSkip]
[FOR {VIEW | REFERENCE}[,...] ]

[ UPDATE {TRACKING|VIEWSTAT}[,...] ]

Note: TYPEOF  is currently available as a Developer Preview as part of the SOQL Polymorphism feature. For more information
on enabling TYPEOF  for your organization, contact Salesforce.

DescriptionSyntax

Specifies a list of one or more fields, separated by commas, that you want to retrieve from
the specified object. The bold elements in the following examples are fieldlists:

fieldList subquery

• SELECT Id, Name, BillingCity FROM Account

• SELECT count() FROM Contact

• SELECT Contact.Firstname, Contact.Account.Name FROM
Contact

You must specify valid field names and must have read-level permissions to each specified
field. The fieldList  defines the ordering of fields in the query results.

7

Alias NotationSalesforce Object Query Language (SOQL)



DescriptionSyntax

fieldList  can include a subquery if the query traverses a relationship. For example:

SELECT Account.Name, (SELECT Contact.LastName FROM
Account.Contacts)
FROM Account

The fieldlist  can also be an aggregate function, such as COUNT()  and
COUNT(fieldName), or be wrapped in Translating Results.

A polymorphic relationship field in objectType  or a polymorphic field in a parent of
objectType  that can reference multiple object types. For example, the What  relationship

typeOfField

field of an Event could be an Account, a Campaign, or an Opportunity. typeOfField
cannot reference a relationship field that is also referenced in fieldList. See TYPEOF
for more information.

A clause of the form WHEN whenObjectType THEN whenFieldList. You can
have one or more whenExpression  clauses inside a TYPEOF expression. See TYPEOF
for more information.

whenExpression

A clause of the form ELSE elseFieldList. This clause is optional inside a TYPEOF
expression. See TYPEOF  for more information.

elseExpression

Specifies the type of object that you want to query(). You must specify a valid object,
such as Account, and must have read-level permissions to that object.

objectType

Available in API version 32.0 and later. Specifies the filterScope for limiting the results
of the query.

filterScope

If WHERE  is specified, determines which rows and values in the specified object
(objectType) to filter against. If unspecified, the query()  retrieves all the rows in the
object that are visible to the user.

conditionExpression

If WITH DATA CATEGORY  is specified, the query()  only returns matching records
that are associated with the specified data categories and are visible to the user. If unspecified,

filteringExpression

the query()  returns the matching records that are visible to the user. The WITH DATA
CATEGORY  clause only filters objects of type:

• Question—to query questions.

• KnowledgeArticleVersion—to query articles.

For more information about the WITH DATA CATEGORY  clause, see WITH DATA
CATEGORY filteringExpression.

Available in API version 18.0 and later. Specifies a list of one or more fields, separated by
commas, that are used to group the query results. A GROUP BY  clause is used with aggregate

fieldGroupByList

functions to summarize the data and enable you to roll up query results rather than having
to process the individual records in your code. See GROUP BY.

Available in API version 18.0 and later. Specifies a list of up to three fields, separated by
commas, that are used to group the query results. The results include extra subtotal rows for
the grouped data. See GROUP BY ROLLUP  and GROUP BY CUBE.

fieldSubtotalGroupByList

8

SOQL SELECT SyntaxSalesforce Object Query Language (SOQL)



DescriptionSyntax

Available in API version 18.0 and later. If the query includes a GROUP BY  clause, this
conditional expression filters the records that the GROUP BY returns. See HAVING.

havingConditionExpression

Specifies a list of one or more fields, separated by commas, that are used to order the query
results. For example, you can query for contacts and order the results by last name, and then
by first name:

SELECT Id, LastName, FirstName
FROM Contact
ORDER BY LastName, FirstName

fieldOrderByList

Note the following implementation tips:

• Statement Character Limit—By default, SOQL statements cannot exceed 20,000 characters in length. For SOQL statements that
exceed this maximum length, the API returns a MALFORMED_QUERY  exception code; no result rows are returned.

Note:  Long, complex SOQL statements, such as statements that contain many formula fields, can sometimes result in a
QUERY_TOO_COMPLICATED  error. The error occurs because the statement is expanded internally when processed by
Salesforce, even though the original SOQL statement is under the 20,000 character limit. To avoid this, reduce the complexity
of your SOQL statement.

• Localized Results—SELECT statements can include the Translating Results, convertCurrency(), and FORMAT() functions
in support of localized fields.

• Dynamic SOQL in Apex—Apex requires that you surround SOQL and SOSL statements with square brackets to use them on the
fly. You can use Apex script variables and expressions when preceded by a colon (:).

• Ordered Results—The order of results is not guaranteed unless you use an ORDER BY  clause in a query.

Condition Expression Syntax (WHERE Clause)
The syntax of the condition expression in a WHERE clause of a SOQL query includes one or more field expressions. You can specify
multiple field expressions to a condition expression by using logical operators.

The conditionExpression  in the WHERE  clause in a SOQL statement uses the following syntax:

fieldExpression [logicalOperator fieldExpression2][...]

You can add multiple field expressions to a condition expression by using logical operators.

The condition expressions in SOQL SELECT  statements appear in bold in these examples:

• SELECT Name FROM Account WHERE Name LIKE 'A%'

• SELECT Id FROM Contact WHERE Name LIKE 'A%' AND MailingState='California'

You can use date or datetime values, or date literals. The format for date and dateTime fields are different.

• SELECT Name FROM Account WHERE CreatedDate > 2011-04-26T10:00:00-08:00

• SELECT Amount FROM Opportunity WHERE CALENDAR_YEAR(CreatedDate) = 2011

For more information on date functions, such as CALENDAR_YEAR(), see Date Functions.

9

Condition Expression Syntax (WHERE Clause)Salesforce Object Query Language (SOQL)



You can use parentheses to define the order in which fieldExpressions are evaluated. For example, the following expression is
true  if fieldExpression1 is true  and either fieldExpression2  or fieldExpression3  are true:

fieldExpression1 AND (fieldExpression2 OR fieldExpression3)

However, the following expression is true  if either fieldExpression3  is true  or both fieldExpression1  and
fieldExpression2  are true.

(fieldExpression1 AND fieldExpression2) OR fieldExpression3

Client applications must specify parentheses when nesting operators. However, multiple operators of the same type do not need to be
nested.

Note: WHERE  clauses cannot exceed 4,000 characters.

Using null  in SOQL Queries
You can search for null values by using the null keyword.

Use null  to represent null values in SOQL queries.

For example, the following statement would return the account IDs of all events with a non-null activity date:

SELECT AccountId
FROM Event
WHERE ActivityDate != null

Note:  The WHERE  clause behaves in two different ways, depending on the version, when handling null values in a parent field
for a relationship query. In a WHERE  clause that checks for a value in a parent field, if the parent does not exist, the record is
returned in version 13.0 and later but is not returned in versions before 13.0

SELECT Id
FROM Case
WHERE Contact.LastName = null

Case record Id  values are returned in version 13.0 and later, but are not returned in versions before 13.0.

Translating Results
Use toLabel(fields) to translate SOQL query results into the user’s language.

A client application can have results from a query returned that are translated into the user’s language, using toLabel():

toLabel(object.field)

Use toLabel()  on regular, multi-select, division, or currency code picklist fields (any field that has picklist values returned by the
relevant describe call), data category group and data category unique name fields or RecordType names. Any organization can use
toLabel(). It is particularly useful for organizations that have the Translation Workbench enabled.

For example:

SELECT Company, toLabel(Recordtype.Name) FROM Lead

This query returns lead records with the record type name translated into the language for the user who issued the query.

Note:  You cannot filter on the translated name value from a record type. Always filter on the master value or the ID of the object
for record types.

10

Condition Expression Syntax (WHERE Clause)Salesforce Object Query Language (SOQL)



You can use toLabel()  to filter records using a translated picklist value. For example:

SELECT Company, toLabel(Status)
FROM Lead
WHERE toLabel(Status) = 'le Draft'

Lead records are returned where the picklist value for Status is 'le Draft.' The comparison is made against the value for the user’s language.
If no translation is available for the user’s language for the specified picklist, the comparison is made against the master values.

Note:  The toLabel()  method cannot be used with ORDER BY. Salesforce always uses the picklist’s defined order, just like
reports. Also, you can’t use toLabel()  in the WHERE  clause for division or currency ISO code picklists.

Filtering on Boolean Fields
You can use the Boolean values TRUE  and FALSE  in SOQL queries.

To filter on a Boolean field, use the following syntax:

WHERE BooleanField = TRUE

WHERE BooleanField = FALSE

Querying Multi-Select Picklists
You can search for individual values in multi-select picklists, which are regularly used in client applications.

Client applications use a specific syntax for querying multi-select picklists (in which multiple items can be selected).

The following operators are supported for querying multi-select picklists:

DescriptionOperator

Equals the specified string.=

Does not equal the specified string.!=

Includes (contains) the specified string.includes

Excludes (does not contain) the specified string.excludes

Specifies AND for two or more strings. Use ;  for multi-select picklists when two or more items
must be selected. For example:

'AAA;BBB'

;

Examples
The following query filters on values in the MSP1__c  field that are equal to AAA  and BBB selected (exact match):

SELECT Id, MSP1__c FROM CustObj__c WHERE MSP1__c = 'AAA;BBB'

In the following query:

SELECT Id, MSP1__c from CustObj__c WHERE MSP1__c includes ('AAA;BBB','CCC')

the query filters on values in the MSP1__c  field that contains either of these values:

11

Condition Expression Syntax (WHERE Clause)Salesforce Object Query Language (SOQL)



• AAA  and BBB selected.

• CCC  selected.

A match will result on any field value that contains 'AAA' and 'BBB' or any field that contains 'CCC'. For example, the following will be
matched:

• matches with ' AAA;BBB':

'AAA;BBB'
'AAA;BBB;DDD'

• matches with ' CCC':

'CCC'
'CCC;EEE'

'AAA;CCC'

Filtering on Polymorphic Relationship Fields
You can search polymorphic relationship fields on a SQL query. A polymorphic relationship is one where the current object can be one
of several object types depending on a related Event.

To filter on a polymorphic relationship field, use the Type qualifier.

WHERE polymorphicRelationship.Type comparisonExpression

DescriptionSyntax

A polymorphic relationship field in object being queried that can reference multiple object
types. For example, the What  relationship field of an Event could be an Account, a Campaign,
or an Opportunity.

polymorphicRelationship

The comparison being made against the object type in the polymorphic relationship. For
more information, see fieldExpression Syntax. Note that the type names returned by
Type are string values, like ‘User’.

comparisonExpression

The following example only returns records where the What field of Event is referencing an Account or Opportunity. If an Event record
referenced a Campaign in the What field, it would not be returned as part of this SELECT.

SELECT Id
FROM Event
WHERE What.Type IN ('Account', 'Opportunity')

See Understanding Polymorphic Keys and Relationships for more details on polymorphic relationships, and additional filtering examples.

fieldExpression Syntax
The field expression syntax of the WHERE clause in a SOQL query consists of a field name, a comparison operator, and a value that’s used
to compare with the value in the field name.

fieldExpression  uses the following syntax:

fieldName comparisonOperator value

12

fieldExpression SyntaxSalesforce Object Query Language (SOQL)



where:

DescriptionSyntax

The name of a field in the specified object. Use of single or double quotes around the name will result in
an error. You must have at least read-level permissions to the field. It can be any field except a long text
area field, encrypted data field, or base64-encoded field. It does not need to be a field in the fieldList.

fieldName

Case-insensitive operators that compare values.comparisonOperator

A value used to compare with the value in fieldName. You must supply a value whose data type matches
the field type of the specified field. You must supply a native value—other field names or calculations are

value

not permitted. If quotes are required (for example, they are not for dates and numbers), use single quotes.
Double quotes result in an error.

Comparison Operators
Comparison operators, such as =, !=, <, >, LIKE, and IN, can be used in the field expression of the WHERE  clause in a SELECT  statement
in a SOQL query. You can also create more complex queries with semi-joins and anti-joins.

The following table lists the comparisonOperator  values that are used in fieldExpression  syntax. Comparisons on strings
are case-sensitive for unique case-sensitive fields and case-insensitive for all other fields.

DescriptionNameOperator

Expression is true if the value in the specified fieldName equals the specified value
in the expression. String comparisons using the equals operator are case-sensitive for
unique case-sensitive fields and case-insensitive for all other fields.

Equals=

Expression is true if the value in the specified fieldName does not equal the specified
value.

Not equals!=

Expression is true if the value in the specified fieldName  is less than the specified
value.

Less than<

Expression is true if the value in the specified fieldName  is less than, or equals, the
specified value.

Less or equal<=

Expression is true if the value in the specified fieldName  is greater than the specified
value.

Greater than>

Expression is true if the value in the specified fieldName  is greater than or equal to
the specified value.

Greater or
equal

>=

Expression is true if the value in the specified fieldName matches the characters of
the text string in the specified value. The LIKE  operator in SOQL and SOSL is similar

LikeLIKE

to the LIKE  operator in SQL; it provides a mechanism for matching partial text strings
and includes support for wildcards.

• The %  and _  wildcards are supported for the LIKE  operator.

• The %  wildcard matches zero or more characters.

• The _  wildcard matches exactly one character.

• The text string in the specified value  must be enclosed in single quotes.

13

fieldExpression SyntaxSalesforce Object Query Language (SOQL)



DescriptionNameOperator

• The LIKE  operator is supported for string fields only.

• The LIKE  operator performs a case-insensitive match, unlike the case-sensitive
matching in SQL.

• The LIKE  operator in SOQL and SOSL supports escaping of special characters %
or _.

• Don’t use the backslash character in a search except to escape a special character.

For example, the following query matches Appleton, Apple, and Appl, but not Bappl:

SELECT AccountId, FirstName, lastname
FROM Contact
WHERE lastname LIKE 'appl%'

If the value equals any one of the specified values in a WHERE  clause. For example:

SELECT Name FROM Account
WHERE BillingState IN ('California', 'New York')

ININ

The values for IN  must be in parentheses. String values must be surrounded by single
quotes.

IN  and NOT IN  can also be used for semi-joins and anti-joins when querying on ID
(primary key) or reference (foreign key) fields.

If the value does not equal any of the specified values in a WHERE  clause. For example:

SELECT Name FROM Account
WHERE BillingState NOT IN ('California', 'New York')

NOT INNOT IN

The values for NOT IN  must be in parentheses, and string values must be surrounded
by single quotes.

There is also a logical operator NOT, which is unrelated to this comparison operator.

Applies only to multi-select picklists.INCLUDES
EXCLUDES

Semi-Joins with IN  and Anti-Joins with NOT IN

You can query values in a field where another field on the same object has a specified set of values, using IN. For example:

SELECT Name FROM Account
WHERE BillingState IN ('California', 'New York')

In addition, you can create more complex queries by replacing the list of values in the IN  or NOT IN  clause with a subquery. The
subquery can filter by ID (primary key) or reference (foreign key) fields. A semi-join is a subquery on another object in an IN  clause to
restrict the records returned. An anti-join is a subquery on another object in a NOT IN  clause to restrict the records returned.

Sample uses of semi-joins and anti-joins include:

• Get all contacts for accounts that have an opportunity with a particular record type.

• Get all open opportunities for accounts that have active contracts.

14

fieldExpression SyntaxSalesforce Object Query Language (SOQL)



• Get all open cases for contacts that are the decision maker on an opportunity.

• Get all accounts that do not have any open opportunities.

If you filter by an ID field, you can create parent-to-child semi- or anti-joins, such as Account  to Contact. If you filter by a reference
field, you can also create child-to-child semi- or anti-joins, such as Contact  to Opportunity, or child-to-parent semi- or anti-joins,
such as Opportunity  to Account.

ID field Semi-Join
You can include a semi-join in a WHERE  clause. For example, the following query returns account IDs if an associated opportunity
is lost:

SELECT Id, Name
FROM Account
WHERE Id IN
( SELECT AccountId
FROM Opportunity
WHERE StageName = 'Closed Lost'

)

This example is a parent-to-child semi-join from Account  to Opportunity. Notice that the left operand, Id, of the IN  clause
is an ID field. The subquery returns a single field of the same type as the field to which it is compared. A full list of restrictions that
prevent unnecessary processing is provided at the end of this section.

Reference Field Semi-Join
The following query returns task IDs for all contacts in Twin Falls:

SELECT Id
FROM Task
WHERE WhoId IN
(
SELECT Id
FROM Contact
WHERE MailingCity = 'Twin Falls'

)

Notice that the left operand, WhoId, of the IN clause is a reference field. An interesting aspect of this query is that WhoId  is a
polymorphic reference field as it can point to a contact or a lead. The subquery restricts the results to contacts.

ID field Anti-Join
The following query returns account IDs for all accounts that do not have any open opportunities:

SELECT Id
FROM Account
WHERE Id NOT IN
(
SELECT AccountId
FROM Opportunity
WHERE IsClosed = false

)

Reference Field Anti-Join
The following query returns opportunity IDs for all contacts whose source is not Web:

SELECT Id
FROM Opportunity
WHERE AccountId NOT IN
(

15

fieldExpression SyntaxSalesforce Object Query Language (SOQL)



SELECT AccountId
FROM Contact
WHERE LeadSource = 'Web'

)

This example is a child-to-child anti-join from Opportunity  to Contact.

Multiple Semi-Joins or Anti-Joins
You can combine semi-join or anti-join clauses in a query. For example, the following query returns account IDs that have open
opportunities if the last name of the contact associated with the account is like the last name “Apple”:

SELECT Id, Name
FROM Account
WHERE Id IN
(
SELECT AccountId
FROM Contact
WHERE LastName LIKE 'apple%'

)
AND Id IN
(
SELECT AccountId
FROM Opportunity
WHERE isClosed = false

)

You can use at most two subqueries in a single semi-join or anti-join query. Multiple semi-joins and anti-join queries are also subject
to existing limits on subqueries per query.

Semi-Joins or Anti-Joins Evaluating Relationship Queries
You can create a semi-join or anti-join that evaluates a relationship query in a SELECT  clause. For example, the following query
returns opportunity IDs and their related line items if the opportunity's line item total value is more than $10,000:

SELECT Id, (SELECT Id from OpportunityLineItems)
FROM Opportunity
WHERE Id IN
(
SELECT OpportunityId
FROM OpportunityLineItem
WHERE totalPrice > 10000

)

Because a great deal of processing work is required for semi-join and anti-join queries, Salesforce imposes the following restrictions to
maintain the best possible performance:

• Basic limits:

– No more than two IN  or NOT IN  statements per WHERE clause.

– You cannot use the NOT  operator as a conjunction with semi-joins and anti-joins. Using it converts a semi-join to an anti-join,
and the reverse. Instead of using the NOT  operator, write the query in the appropriate semi-join or anti-join form.

• Main query limits:

The following restrictions apply to the main WHERE  clause of a semi-join or anti-join query:

16

fieldExpression SyntaxSalesforce Object Query Language (SOQL)



– The left operand must query a single ID (primary key) or reference (foreign key) field. The selected field in a subquery can be a
reference field. For example:

SELECT Id
FROM Idea
WHERE (Id IN (SELECT ParentId FROM Vote WHERE CreatedDate > LAST_WEEK AND
Parent.Type='Idea'))

– The left operand can't use relationships. For example, the following semi-join query is invalid due to the Account.Id
relationship field:

SELECT Id
FROM Contact
WHERE Account.Id IN
(
SELECT ...
)

• Subquery limits:

– A subquery must query a field referencing the same object type as the main query.

– There is no limit on the number of records matched in a subquery. Standard SOQL query limits apply to the main query.

– The selected column in a subquery must be a foreign key field, and cannot traverse relationships. This limit means that you
cannot use dot notation in a selected field of a subquery. For example, the following query is valid:

SELECT Id, Name
FROM Account
WHERE Id IN
(
SELECT AccountId
FROM Contact
WHERE LastName LIKE 'Brown_%'

)

Using Account.Id  (dot notation) instead of AccountId is not supported. Similarly, subqueries like Contact.AccountId
FROM Case  are invalid.

– You cannot query on the same object in a subquery as in the main query. You can write such self semi-join queries without using
semi-joins or anti-joins. For example, the following self semi-join query is invalid:

SELECT Id, Name
FROM Account
WHERE Id IN
(
SELECT ParentId
FROM Account
WHERE Name = 'myaccount'

)

However, it is simple to rewrite the query in a valid form, for example:

SELECT Id, Name
FROM Account
WHERE Parent.Name = 'myaccount'

– You cannot nest a semi-join or anti-join statement in another semi-join or anti-join statement.

17

fieldExpression SyntaxSalesforce Object Query Language (SOQL)



– You can use semi-joins and anti-joins in the main WHERE  statement, but not in a subquery WHERE  statement. For example,
the following query is valid:

SELECT Id
FROM Idea
WHERE (Idea.Title LIKE 'Vacation%')
AND (Idea.LastCommentDate > YESTERDAY)
AND (Id IN (SELECT ParentId FROM Vote

WHERE CreatedById = '005x0000000sMgYAAU'
AND Parent.Type='Idea'))

The following query is invalid since the nested query is an extra level deep:

SELECT Id
FROM Idea
WHERE
((Idea.Title LIKE 'Vacation%')
AND (CreatedDate > YESTERDAY)
AND (Id IN (SELECT ParentId FROM Vote

WHERE CreatedById = '005x0000000sMgYAAU'
AND Parent.Type='Idea')

)
OR (Idea.Title like 'ExcellentIdea%'))

– You cannot use subqueries with OR.

– COUNT, FOR UPDATE, ORDER BY, and LIMIT  are not supported in subqueries.

– The following objects are not currently supported in subqueries:

• ActivityHistory

• Attachments

• Event

• EventAttendee

• Note

• OpenActivity

• Tags (AccountTag, ContactTag, and all other tag objects)

• Task

Logical Operators
Logical operators can be used in the field expression of the WHERE clause in a SOQL query. These operators are AND, OR, and NOT.

The following table lists the logical operator values that are used in fieldExpression  syntax:

DescriptionSyntaxOperator

true  if both fieldExpressionX  and fieldExpressionY  are true.fieldExpressionX AND
fieldExpressionY

AND

true  if either fieldExpressionX or fieldExpressionY  is true.

Relationship queries with foreign key values in an OR  clause behave differently
depending on the version of the API. In a WHERE  clause that uses OR, if the

fieldExpressionX OR
fieldExpressionY

OR

18

fieldExpression SyntaxSalesforce Object Query Language (SOQL)



DescriptionSyntaxOperator

foreign key value in a record is null, the record is returned in version 13.0 and
later, but not returned in versions before 13.0.

SELECT Id FROM Contact WHERE LastName = 'foo' or
Account.Name = 'bar'

The contact with no parent account has a last name that meets the criteria, so
it is returned in version 13.0 and later.

true  if fieldExpressionX  is false.

There is also a comparison operator NOT IN, which is different from this logical
operator.

not fieldExpressionXNOT

Date Formats and Date Literals
In a SOQL query you can specify either a particular date or a date literal. A date literal is a fixed expression that represents a relative range
of time, such as last month, this week, or next year.

dateTime field values are stored as Coordinated Universal Time (UTC). When a dateTime value is returned in Salesforce, it’s adjusted for
the time zone specified in your org preferences. SOQL queries, however, return dateTime field values as UTC values. If you want to process
these values in different time zones, your application might need to handle the conversion.

Date Formats
A fieldExpression  uses different date formats for date and dateTime fields. If you specify a dateTime format in a query, you can
filter only on dateTime fields. Similarly, if you specify a date format value, you can filter only on date fields.:

ExampleFormat SyntaxFormat

1999-01-01YYYY-MM-DDDate only

Date, time, and time zone
offset

• 1999-01-01T23:01:01+01:00• YYYY-MM-DDThh:mm:ss+hh:mm

• •YYYY-MM-DDThh:mm:ss-hh:mm 1999-01-01T23:01:01-08:00

•• 1999-01-01T23:01:01ZYYYY-MM-DDThh:mm:ssZ

The zone offset is always from UTC. For more information, see:

• http://www.w3.org/TR/xmlschema-2/#isoformats

• http://www.w3.org/TR/NOTE-datetime

Note:  For a fieldExpression  that uses date formats, the date is not enclosed in single quotes. Don’t use quotes around
the date. For example:

SELECT Id
FROM Account
WHERE CreatedDate > 2005-10-08T01:02:03Z

19

fieldExpression SyntaxSalesforce Object Query Language (SOQL)

http://www.w3.org/TR/xmlschema-2/#isoformats
http://www.w3.org/TR/NOTE-datetime


Note:  The SELECT  clause supports formatting of standard and custom number, date, time, and currency fields. These fields
reflect the appropriate format for the given user locale. The field format matches what appears in the Salesforce Classic user
interface.

Date Literals
A fieldExpression  can use a date literal to compare a range of values to the value in a date  or dateTime  field. Each literal
is a range of time beginning with midnight (00:00:00). To find a value within the range, use =. To find values on either side of the range,
use >  or <. The following table shows the available list of date literals, the ranges they represent, and examples.

ExampleRangeDate Literal

SELECT Id FROM Account WHERE
CreatedDate = YESTERDAY

Starts 00:00:00 the day before and continues for
24 hours.

YESTERDAY

SELECT Id FROM Account WHERE
CreatedDate > TODAY

Starts 00:00:00 of the current day and continues
for 24 hours.

TODAY

SELECT Id FROM Opportunity WHERE
CloseDate = TOMORROW

Starts 00:00:00 after the current day and continues
for 24 hours.

TOMORROW

SELECT Id FROM Account WHERE
CreatedDate > LAST_WEEK

Starts 00:00:00 on the first day of the week before
the most recent first day of the week and
continues for seven full days. Your locale
determines the first day of the week.

LAST_WEEK

SELECT Id FROM Account WHERE
CreatedDate < THIS_WEEK

Starts 00:00:00 on the most recent first day of the
week before the current day and continues for
seven full days. Your locale determines the first
day of the week.

THIS_WEEK

SELECT Id FROM Opportunity WHERE
CloseDate = NEXT_WEEK

Starts 00:00:00 on the most recent first day of the
week after the current day and continues for seven
full days. Your locale determines the first day of
the week.

NEXT_WEEK

SELECT Id FROM Opportunity WHERE
CloseDate > LAST_MONTH

Starts 00:00:00 on the first day of the month before
the current day and continues for all the days of
that month.

LAST_MONTH

SELECT Id FROM Account WHERE
CreatedDate < THIS_MONTH

Starts 00:00:00 on the first day of the month that
the current day is in and continues for all the days
of that month.

THIS_MONTH

SELECT Id FROM Opportunity WHERE
CloseDate = NEXT_MONTH

Starts 00:00:00 on the first day of the month after
the month that the current day is in and continues
for all the days of that month.

NEXT_MONTH

SELECT Id FROM Account WHERE
CreatedDate = LAST_90_DAYS

Starts 00:00:00 of the current day and continues
for the past 90 days.

LAST_90_DAYS

SELECT Id FROM Opportunity WHERE
CloseDate > NEXT_90_DAYS

Starts 00:00:00 of the current day and continues
for the next 90 days.

NEXT_90_DAYS

20

fieldExpression SyntaxSalesforce Object Query Language (SOQL)



ExampleRangeDate Literal

SELECT Id FROM Account WHERE
CreatedDate = LAST_N_DAYS:365

For the number n  provided, starts 00:00:00 of the
current day and continues for the past n  days.

LAST_N_DAYS:n

SELECT Id FROM Opportunity WHERE
CloseDate > NEXT_N_DAYS:15

For the number n  provided, starts 00:00:00 of the
current day and continues for the next n  days.

NEXT_N_DAYS:n

SELECT Id FROM Opportunity WHERE
CloseDate > NEXT_N_WEEKS:4

For the number n  provided, starts 00:00:00 of the
first day of the next week and continues for the
next n  weeks.

NEXT_N_WEEKS:n

SELECT Id FROM Account WHERE
CreatedDate = LAST_N_WEEKS:52

For the number n  provided, starts 00:00:00 of the
last day of the previous week and continues for
the past n  weeks.

LAST_N_WEEKS:n

SELECT Id FROM Opportunity WHERE
CloseDate > NEXT_N_MONTHS:2

For the number n  provided, starts 00:00:00 of the
first day of the next month and continues for the
next n  months.

NEXT_N_MONTHS:n

SELECT Id FROM Account WHERE
CreatedDate = LAST_N_MONTHS:12

For the number n  provided, starts 00:00:00 of the
last day of the previous month and continues for
the past n months.

LAST_N_MONTHS:n

SELECT Id FROM Account WHERE
CreatedDate = THIS_QUARTER

Starts 00:00:00 of the current quarter and
continues to the end of the current quarter.

THIS_QUARTER

SELECT Id FROM Account WHERE
CreatedDate > LAST_QUARTER

Starts 00:00:00 of the previous quarter and
continues to the end of that quarter.

LAST_QUARTER

SELECT Id FROM Account WHERE
CreatedDate < NEXT_QUARTER

Starts 00:00:00 of the next quarter and continues
to the end of that quarter.

NEXT_QUARTER

SELECT Id FROM Account WHERE
CreatedDate < NEXT_N_QUARTERS:2

Starts 00:00:00 of the next quarter and continues
to the end of the nth quarter.

NEXT_N_QUARTERS:n

SELECT Id FROM Account WHERE
CreatedDate > LAST_N_QUARTERS:2

Starts 00:00:00 of the previous quarter and
continues to the end of the previous nth quarter.

LAST_N_QUARTERS:n

SELECT Id FROM Opportunity WHERE
CloseDate = THIS_YEAR

Starts 00:00:00 on January 1 of the current year
and continues through the end of December 31
of the current year.

THIS_YEAR

SELECT Id FROM Opportunity WHERE
CloseDate > LAST_YEAR

Starts 00:00:00 on January 1 of the previous year
and continues through the end of December 31
of that year.

LAST_YEAR

SELECT Id FROM Opportunity WHERE
CloseDate < NEXT_YEAR

Starts 00:00:00 on January 1 of the following year
and continues through the end of December 31
of that year.

NEXT_YEAR

SELECT Id FROM Opportunity WHERE
CloseDate < NEXT_N_YEARS:5

Starts 00:00:00 on January 1 of the following year
and continues through the end of December 31
of the nth year.

NEXT_N_YEARS:n

21

fieldExpression SyntaxSalesforce Object Query Language (SOQL)



ExampleRangeDate Literal

SELECT Id FROM Opportunity WHERE
CloseDate > LAST_N_YEARS:5

Starts 00:00:00 on January 1 of the previous year
and continues through the end of December 31
of the previous nth year.

LAST_N_YEARS:n

SELECT Id FROM Account WHERE
CreatedDate =
THIS_FISCAL_QUARTER

Starts 00:00:00 on the first day of the current fiscal
quarter and continues through the end of the last
day of the fiscal quarter. The fiscal year is defined
on the Fiscal Year page in Setup.

THIS_FISCAL_QUARTER

SELECT Id FROM Account WHERE
CreatedDate >
LAST_FISCAL_QUARTER

Starts 00:00:00 on the first day of the last fiscal
quarter and continues through the end of the last
day of that fiscal quarter. The fiscal year is defined
on the Fiscal Year page in Setup.

LAST_FISCAL_QUARTER

SELECT Id FROM Account WHERE
CreatedDate <
NEXT_FISCAL_QUARTER

Starts 00:00:00 on the first day of the next fiscal
quarter and continues through the end of the last
day of that fiscal quarter. The fiscal year is defined
on the Fiscal Year page in Setup.

NEXT_FISCAL_QUARTER

SELECT Id FROM Account WHERE
CreatedDate <
NEXT_N_FISCAL_QUARTERS:6

Starts 00:00:00 on the first day of the next fiscal
quarter and continues through the end of the last
day of the nth fiscal quarter. The fiscal year is
defined on the Fiscal Year page in Setup.

NEXT_N_FISCAL_
QUARTERS:n

SELECT Id FROM Account WHERE
CreatedDate >
LAST_N_FISCAL_QUARTERS:6

Starts 00:00:00 on the first day of the last fiscal
quarter and continues through the end of the last
day of the previous nth fiscal quarter. The fiscal
year is defined on the Fiscal Year page in Setup.

LAST_N_FISCAL_
QUARTERS:n

SELECT Id FROM Opportunity WHERE
CloseDate = THIS_FISCAL_YEAR

Starts 00:00:00 on the first day of the current fiscal
year and continues through the end of the last day
of the fiscal year. The fiscal year is defined on the
Fiscal Year page in Setup.

THIS_FISCAL_YEAR

SELECT Id FROM Opportunity WHERE
CloseDate > LAST_FISCAL_YEAR

Starts 00:00:00 on the first day of the last fiscal year
and continues through the end of the last day of
that fiscal year. The fiscal year is defined on the
Fiscal Year page in Setup.

LAST_FISCAL_YEAR

SELECT Id FROM Opportunity WHERE
CloseDate < NEXT_FISCAL_YEAR

Starts 00:00:00 on the first day of the next fiscal
year and continues through the end of the last day
of that fiscal year. The fiscal year is defined on the
Fiscal Year page in Setup.

NEXT_FISCAL_YEAR

SELECT Id FROM Opportunity WHERE
CloseDate <
NEXT_N_FISCAL_YEARS:3

Starts 00:00:00 on the first day of the next fiscal
year and continues through the end of the last day
of the nth fiscal year. The fiscal year is defined on
the Fiscal Year page in Setup.

NEXT_N_FISCAL_
YEARS:n

22

fieldExpression SyntaxSalesforce Object Query Language (SOQL)



ExampleRangeDate Literal

SELECT Id FROM Opportunity WHERE
CloseDate >
LAST_N_FISCAL_YEARS:3

Starts 00:00:00 on the first day of the last fiscal year
and continues through the end of the last day of
the previous nth fiscal year. The fiscal year is
defined on the Fiscal Year page in Setup.

LAST_N_FISCAL_
YEARS:n

Note:  If you’ve defined custom fiscal years in the Salesforce user interface and in any FISCAL  date literals that you specify a
range that is outside the years you’ve defined, an invalid date error is returned.

Minimum and Maximum Dates
Only dates within a certain range are valid. The earliest valid date is 1700-01-01T00:00:00Z GMT, or just after midnight on January 1,
1700. The latest valid date is 4000-12-31T00:00:00Z GMT, or just after midnight on December 31, 4000. These values are offset by your
time zone. For example, in the Pacific time zone, the earliest valid date is 1699-12-31T16:00:00, or 4:00 PM on December 31, 1699.

USING SCOPE
The optional USING SCOPE  clause of a SOQL query returns records within a specified scope. For example, you can limit the records
to return only objects that the user owns or only records in the user’s territory.

With API version 32.0 and later, you can use USING SCOPE  to limit the results of a query to a specified filterScope. The syntax
is:

[USING SCOPE filterScope]

ORDER BY
Use the optional ORDER BY  in a SELECT  statement of a SOQL query to control the order of the query results, such as alphabetically
beginning with z. If records are null, you can use ORDER BY  to display the empty records first or last.

You can use ORDER BY  in a SELECT  statement to control the order of the query results. There is no guarantee of the order of results
unless you use an ORDER BY  clause in a query. The syntax is:

[ORDER BY fieldOrderByList {ASC|DESC} [NULLS {FIRST|LAST}] ]

DescriptionSyntax

Specifies whether the results are ordered in ascending (ASC) or descending (DESC) order. Default
order is ascending.

ASC  or DESC

Orders null records at the beginning (NULLS FIRST) or end (NULLS LAST) of the results. By
default, null values are sorted first.

NULLS FIRST  or NULLS
LAST

23

USING SCOPESalesforce Object Query Language (SOQL)



For example, the following query returns a query result with Account records in alphabetical order by first name, sorted in descending
order, with accounts that have null names appearing last:

SELECT Name
FROM Account
ORDER BY Name DESC NULLS LAST

The following factors affect results returned with ORDER BY:

• Sorting is case insensitive.

• ORDER BY  is compatible with relationship query syntax.

• Multiple column sorting is supported, by listing more than one fieldExpression  clause.

• Relationship queries with foreign key values in an ORDER BY  clause behave differently depending on the version of the Force.com
API. In an ORDER BY  clause, if the foreign key value in a record is null, the record is returned in version 13.0 and later, but not
returned in versions before 13.0.

SELECT Id, CaseNumber, Account.Id, Account.Name
FROM Case
ORDER BY Account.Name

Any case record for which AccountId  is empty is returned in version 13.0 and later.

• Sort order is determined by current user locale. For English locales, Salesforce uses a sorting mechanism based on the UTF-8 values
of the character data. For Asian locales, Salesforce uses a linguistic sorting mechanism based on the ISO 14651 and Unicode 3.2
standards.

The following limitations apply to data types when using ORDER BY:

• These data types are not supported: multi-select picklist, rich text area, long text area, encrypted (if enabled), and data category
group reference (if Salesforce Knowledge is enabled).

• All other data types are supported, with the following caveats:

– Corporate currency always sorts using corporate currency value, if available.

– phone  data does not include any special formatting when sorting, for example, non-numeric characters such as dash or
parentheses are included in the sorting.

– picklist  sorting is defined by the picklist sort determined during setup.

External objects have the following limitations for the ORDER BY clause.

• The following limits apply only to the OData 2.0 and 4.0 adapters for Salesforce Connect.

– NULLS FIRST  and NULLS LAST  are ignored.

– External objects don’t support the ORDER BY  clause in relationship queries.

• The following limits apply only to custom adapters for Salesforce Connect.

– NULLS FIRST  and NULLS LAST  are ignored.

You can use ORDER BY  with the optional LIMIT qualifier, in a SELECT  statement:

SELECT Name
FROM Account
WHERE industry = 'media'
ORDER BY BillingPostalCode ASC NULLS LAST LIMIT 125

24

ORDER BYSalesforce Object Query Language (SOQL)



LIMIT
LIMIT  is an optional clause that can be added to a SELECT  statement of a SOQL query to specify the maximum number of rows to
return.

The syntax for LIMIT  is:

SELECT fieldList
FROM objectType
[WHERE conditionExpression]
[LIMIT numberOfRows]

For example:

SELECT Name
FROM Account
WHERE Industry = 'Media' LIMIT 125

This query returns the first 125 Account records whose Industry is Media.

You can use LIMIT  with count()  as the fieldList  to count up to the maximum specified.

You can't use a LIMIT  clause in a query that uses an aggregate function, but does not use a GROUP BY  clause. For example, the
following query is invalid:

SELECT MAX(CreatedDate)
FROM Account LIMIT 1

OFFSET
When expecting many records in a query’s results, you can display the results in multiple pages by using the OFFSET  clause on a SOQL
query. For example, you can use OFFSET  to display records 51 to 75 and then jump to displaying records 301 to 350. Using OFFSET
is an efficient way to handle large results sets.

Use OFFSET  to specify the starting row offset into the result set returned by your query. Because the offset calculation is done on the
server and only the result subset is returned, using OFFSET  is more efficient than retrieving the full result set and then filtering the
results locally. OFFSET  is available in API version 24.0 and later.

SELECT fieldList
FROM objectType
[WHERE conditionExpression]
ORDER BY fieldOrderByList
LIMIT numberOfRowsToReturn
OFFSET numberOfRowsToSkip

As an example, if a SOQL query normally returned 50 rows, you could use OFFSET 10  in your query to skip the first 10 rows:

SELECT Name
FROM Merchandise__c
WHERE Price__c > 5.0
ORDER BY Name
LIMIT 100
OFFSET 10

The result set for the preceding example would be a subset of the full result set, returning rows 11 through 50 of the full set.

25

LIMITSalesforce Object Query Language (SOQL)



Considerations When Using OFFSET
Here are a few points to consider when using OFFSET  in your queries:

• The maximum offset is 2,000 rows. Requesting an offset greater than 2,000 will result in a NUMBER_OUTSIDE_VALID_RANGE
error.

• OFFSET  is intended to be used in a top-level query, and is not allowed in most sub-queries, so the following query is invalid and
will return a MALFORMED_QUERY error:

SELECT Name, Id
FROM Merchandise__c
WHERE Id IN

(
SELECT Id
FROM Discontinued_Merchandise__c
LIMIT 100
OFFSET 20

)
ORDER BY Name

A sub-query can use OFFSET  only if the parent query has a LIMIT 1  clause. The following query is a valid use of OFFSET  in
a sub-query:

SELECT Name, Id
(

SELECT Name FROM Opportunity LIMIT 10 OFFSET 2
)

FROM Account
ORDER BY Name
LIMIT 1

OFFSET  cannot be used as a sub-query in the WHERE  clause, even if the parent query uses LIMIT 1.

Note: Using OFFSET  in sub-queries is a pilot feature that is subject to change in future releases, and is not intended for use
in a production setting. There is no support associated with this pilot feature. For more information, contact Salesforce

• We recommend using an ORDER BY  clause when you use OFFSET  to ensure that the result set ordering is consistent. The row
order of a result set that does not have an ORDER BY  clause will have a stable ordering, however the ordering key is subject to
change and should not be relied on.

• Similarly, we recommend using a LIMIT  clause in combination with OFFSET  if you need to retrieve subsequent subsets of the
same result set. For example, you could retrieve the first 100 rows of a query using the following:

SELECT Name, Id
FROM Merchandise__c
ORDER BY Name
LIMIT 100
OFFSET 0

You could then retrieve the next 100 rows, 101 through 201, using the following query:

SELECT Name, Id
FROM Merchandise__c
ORDER BY Name
LIMIT 100
OFFSET 100

26

OFFSETSalesforce Object Query Language (SOQL)



• OFFSET  is applied to the result set returned at the time of the query. No server-side cursor is created to cache the full result set for
future OFFSET  queries. The page results may change if the underlying data is modified during multiple queries using OFFSET
into the same result set. As an example, suppose the following query normally returns a full result set of 50 rows, and the first 10
rows are skipped using an OFFSET clause:

SELECT Name
FROM Merchandise__c
ORDER BY Name
OFFSET 10

After the query is run, 10 new rows are then inserted into Merchandise__c with Name values that come early in the sort order. If the
query is run again, with the same OFFSET  value, a different set of rows is skipped. If you need to query multiple pages of records
with a consistent server-side cursor, use the queryMore() in SOAP API.

• Offsets are not intended to be used as a replacement for using queryMore(), given the maximum offset size and lack of a
server-side cursor. Multiple queries with offsets into a large result set will have a higher performance impact than using queryMore()
against a server-side cursor.

• When using OFFSET, only the first batch of records will be returned for a given query. If you want to retrieve the next batch you’ll
need to re-execute the query with a higher offset value.

• The OFFSET  clause is allowed in SOQL used in SOAP API, REST API, and Apex. It’s not allowed in SOQL used within Bulk API or
Streaming API.

Update an Article’s Keyword Tracking with SOQL
Track keywords that are used in Salesforce Knowledge article searches with the UPDATE TRACKING optional clause on a SOQL query.
UPDATE TRACKING  is an optional clause that can be added to a SELECT  statement of a SOQL query to report on article searches
and views. Developers can use UPDATE TRACKING  to track the keywords that are used in Salesforce Knowledge article searches.

Example:  You can use this syntax to track a keyword that are used in Salesforce Knowledge article search:

SELECT Title FROM FAQ__kav
WHERE Keyword='Apex' and
Language = 'en_US' and
KnowledgeArticleVersion = 'ka230000000PCiy'
UPDATE TRACKING

Update an Article Viewstat with SOQL
Determine how many hits a Salesforce Knowledge article has had by using the UPDATE VIEWSTAT  optional clause on a SOQL query.
You can get a view count for every article that you have access to online.

The UPDATE VIEWSTAT  clause is used in a SELECT  statement to report on Salesforce Knowledge article searches and views. It
allows developers to update an article’s view statistics.

You can use this syntax to increase the view count for every article you have access to online:

SELECT Title FROM FAQ__kav
WHERE PublishStatus='online' and
Language = 'en_US' and
KnowledgeArticleVersion = 'ka230000000PCiy'
UPDATE VIEWSTAT

27

Update an Article’s Keyword Tracking with SOQLSalesforce Object Query Language (SOQL)

https://developer.salesforce.com/docs/atlas.en-us.204.0.api.meta/api/sforce_api_calls_querymore.htm
https://developer.salesforce.com/docs/atlas.en-us.204.0.api.meta/api/sforce_api_calls_querymore.htm
https://developer.salesforce.com/docs/atlas.en-us.204.0.api.meta/api/sforce_api_calls_querymore.htm


WITH filteringExpression
You can filter records based on field values, for example, to filter according to category or to query and retrieve changes that are tracked
in a user’s profile feed by using WITHfilteringExpression. This optional clause can be added to a SELECT  statement of a
SOQL query.

Unlike the WHERE  clause which only supports fields from the object specified in the FROM  clause, WITH  allows you to filter by other
related criteria. For example, you can use the WITH  clause to filter articles based on their classification in one or more data category
groups. The WITH  clause can only be used in the following cases:

• To filter records based on their categorization. See WITH DATA CATEGORY filteringExpression.

• To query and retrieve record changes tracked in a user profile feed. See UserProfileFeed in the Object Reference for Salesforce and
Force.com.

If WITH  is specified, the query returns only records that match the filter and are visible to the user. If unspecified, the query returns only
the matching records that are visible to the user.

The filtering expression in the statements below is highlighted in bold. The syntax is explained in the following sections.

• SELECT Title FROM KnowledgeArticleVersion WHERE PublishStatus='online' WITH DATA
CATEGORY Geography__c ABOVE usa__c

• SELECT Id FROM UserProfileFeed WITH UserId='005D0000001AamR' ORDER BY CreatedDate
DESC, Id DESC LIMIT 20

WITH DATA CATEGORY filteringExpression

You can search for Salesforce Knowledge articles and questions by their data category in a SOQL query. WITH DATA CATEGORY  is
an optional clause in a SELECT  statement that’s used to filter records that are associated with one or more data categories and are
visible to users.

If WITH DATA CATEGORY  is specified, the query() returns only matching records that are associated with the specified data
categories and are visible to the user. If unspecified, the query() only returns the matching records that are visible to the user.

Important: CategoryData is an object and DATA CATEGORY is syntax in a SOQL WITH  clause. WITH DATA CATEGORY  is
valid syntax, but WITH CategoryData  is not supported.

A SOQL statement using a WITH DATA CATEGORY  clause must also include a FROM ObjectTypeName  clause where
ObjectTypeName  equals:

• KnowledgeArticleVersion to query all article types

• an article type API Name  to query a specific article type

• Question  to query questions

When ObjectTypeName  equals to KnowledgeArticleVersion or any article type API Name  in the FROM  clause, a WHERE  clause
must be specified with one of the following parameters:

• PublishStatus  to query articles depending on their status in the publishing cycle:

– WHERE PublishStatus='online'  for published articles

– WHERE PublishStatus='archived'  for archived articles

– WHERE PublishStatus='draft'  for draft articles

• Id  to query an article based on its id

For information on article types or questions, see “Knowledge Article Types” and “Finding and Viewing Questions” in the Salesforce Help.

28

WITH filteringExpressionSalesforce Object Query Language (SOQL)

https://developer.salesforce.com/docs/atlas.en-us.204.0.object_reference.meta/object_reference/
https://developer.salesforce.com/docs/atlas.en-us.204.0.object_reference.meta/object_reference/
https://developer.salesforce.com/docs/atlas.en-us.204.0.api.meta/api/sforce_api_calls_query.htm
https://developer.salesforce.com/docs/atlas.en-us.204.0.api.meta/api/sforce_api_calls_query.htm
https://developer.salesforce.com/docs/atlas.en-us.204.0.object_reference.meta/object_reference/sforce_api_objects_categorydata.htm
https://developer.salesforce.com/docs/atlas.en-us.204.0.object_reference.meta/object_reference/sforce_api_objects_knowledgearticleversion.htm
https://developer.salesforce.com/docs/atlas.en-us.204.0.object_reference.meta/object_reference/sforce_api_objects_knowledgearticleversion.htm


Note:  The WITH DATA CATEGORY  clause does not support bind variables.

filteringExpression

The filteringExpression in the WITH DATA CATEGORY  clause uses the following syntax:

dataCategorySelection [AND [dataCategorySelection2][...]

The examples in this section are based on the following data category group:

Geography__c
ww__c

northAmerica__c
usa__c
canada__c
mexico__c

europe__c
france__c
uk__c

asia__c

The category filtering in the statements below is highlighted in bold. The syntax is explained in the following sections.

• SELECT Title FROM KnowledgeArticleVersion WHERE PublishStatus='online' WITH DATA
CATEGORY Geography__c ABOVE usa__c

• SELECT Title FROM Question WHERE LastReplyDate > 2005-10-08T01:02:03Z WITH DATA
CATEGORY Geography__c AT (usa__c, uk__c)

• SELECT UrlName FROM KnowledgeArticleVersion WHERE PublishStatus='draft' WITH DATA
CATEGORY Geography__c AT usa__c AND Product__c ABOVE_OR_BELOW mobile_phones__c

You can only use the AND  logical operator. The following syntax is incorrect as OR  is not supported:

WITH DATA CATEGORY Geography__c ABOVE usa__c OR Product__c AT mobile_phones__c

dataCategorySelection

The syntax of the data category selection in a WITH DATA CATEGORY  clause in a SOQL query includes a category group name to
use as a filter, the filter selector, and the name of the category to use for filtering.

The dataCategorySelection uses the following syntax:

dataCategoryGroupName filteringSelector dataCategoryName

DescriptionSyntax

The name of the data category group to use as a filter. Geography__c  is the data category group
in the following example.

You cannot use the same data category group more than once in a query. As an example, the following
command is incorrect: WITH DATA CATEGORY Geography__c ABOVE usa__c AND
Geography__c BELOW europe__c

dataCategoryGroupName

The selector used to filter the data in the specified data category. See Filtering Selectors for a list of
valid selectors.

filteringSelector

29

WITH filteringExpressionSalesforce Object Query Language (SOQL)



DescriptionSyntax

The name of the data category for filtering. You must have visibility on the category you specify. For
more information on category visibility, see "Data Category Visibility" in the Salesforce Help.

You can use parentheses to apply the filtering operator to more than one data category. Each data
category must be separated by a comma.

dataCategoryName

Example: WITH DATA CATEGORY Geography__c AT (usa__c,france__c,uk__c)

You can't use the AND  operator instead of parentheses to list multiple data categories. The following
syntax does not work WITH DATA CATEGORY Geography__c AT usa__c AND
france__c

Filtering Selectors
When specifying filters for a WITH CATEGORY  clause of a SOQL query, you can use AT to select the specified category, ABOVE to
select the category and all its parent categories, BELOW to select the category and all its subcategories, and ABOVE_OR_BELOW to select
the category, its parent categories, and its subcategories.

The following table lists the filteringSelector values that are used in the dataCategorySelection syntax.

The examples in this section are based on the following data category group:

Geography__c
ww__c

northAmerica__c
usa__c
canada__c
mexico__c

europe__c
france__c
uk__c

asia__c

DescriptionSelector

Select the specified data category.

For example, the following syntax selects asia__c.

WITH DATA CATEGORY Geography__c AT asia__c

AT

Select the specified data category and all its parent categories.

For example, the following syntax selects usa__c, northAmerica__c, and ww__c.

WITH DATA CATEGORY Geography__c ABOVE usa__c

ABOVE

Select the specified data category and all its subcategories.

For example the following selects northAmerica__c, usa__c, canada__c, and mexico__c.

WITH DATA CATEGORY Geography__c BELOW northAmerica__c

BELOW

30

WITH filteringExpressionSalesforce Object Query Language (SOQL)



DescriptionSelector

Select the specified data category and:ABOVE_OR_BELOW

• all its parent categories

• all its subcategories

For example the following selects ww__c, europe__c, france__c  and uk__c.

WITH DATA CATEGORY Geography__c ABOVE_OR_BELOW europe__c

Note:  For more information on data category groups, data categories, parent and subcategories, see "Data Categories in
Salesforce.com" in the Salesforce Help.

Example WITH DATA CATEGORY Clauses

Here are examples of WITH DATA CATEGORY  clauses in a SELECT  statement in a SOQL query.

Example(s)Type of Search

SELECT Title FROM Question WHERE LastReplyDate <
2005-10-08T01:02:03Z WITH DATA CATEGORY Product__c AT
mobile_phones__c

Select the title from all questions classified
with the mobile_phones__c  data
category in the Product__c  data
category group

SELECT Title, Summary FROM KnowledgeArticleVersion WHERE
PublishStatus='Online' AND Language = 'en_US' WITH DATA

Select the title and summary from all
published Knowledge articles classified:

CATEGORY Geography__c ABOVE_OR_BELOW europe__c AND
Product__c BELOW All__c• above or below europe__c  in the

Geography__c  data category group

• below allProducts__c  in the
Product__c  data category group

SELECT Id, Title FROM Offer__kav WHERE
PublishStatus='Draft' AND Language = 'en_US' WITH DATA

Select the ID and title from draft articles of
type “Offer__kav” classified :

CATEGORY Geography__c AT (france__c,usa__c) AND
Product__c ABOVE dsl__c• with the france__c  or usa__c

data category in the Geography__c
data category group

• above the dsl__c  data category in
the Product__  data category group

GROUP BY
You can use the GROUP BY  option in a SOQL query to avoid iterating through individual query results. That is, you specify a group of
records instead of processing many individual records.

31

GROUP BYSalesforce Object Query Language (SOQL)



With API version 18.0 and later, you can use GROUP BY  with aggregate functions, such as SUM()  or MAX(), to summarize the data
and enable you to roll up query results rather than having to process the individual records in your code. The syntax is:

[GROUP BY fieldGroupByList]

fieldGroupByList  specifies a list of one or more fields, separated by commas, that you want to group by. If the list of fields in a
SELECT  clause includes an aggregate function, you must include all non-aggregated fields in the GROUP BY  clause.

For example, to determine how many leads are associated with each LeadSource  value without using GROUP BY, you could run
the following query:

SELECT LeadSource FROM Lead

You would then write some code to iterate through the query results and increment counters for each LeadSource  value. You can
use GROUP BY  to get the same results without the need to write any extra code. For example:

SELECT LeadSource, COUNT(Name)
FROM Lead
GROUP BY LeadSource

For a list of aggregate functions supported by SOQL, see Aggregate Functions.

You can use a GROUP BY  clause without an aggregated function to query all the distinct values, including null, for an object. The
following query returns the distinct set of values stored in the LeadSource  field.

SELECT LeadSource
FROM Lead
GROUP BY LeadSource

Note that the COUNT_DISTINCT() function returns the number of distinct non-null  field values matching the query criteria.

Considerations When Using GROUP BY

When you’re creating SOQL queries with the GROUP BY  clause, there are some considerations to keep in mind.

• Some object fields have a field type that does not support grouping. You can't include fields with these field types in a GROUP BY
clause. The Field object associated with DescribeSObjectResult has a groupable  field that defines whether you can include the
field in a GROUP BY  clause.

• You must use a GROUP BY  clause if your query uses a LIMIT  clause and an aggregated function. For example, the following
query is valid:

SELECT Name, Max(CreatedDate)
FROM Account
GROUP BY Name
LIMIT 5

The following query is invalid as there is no GROUP BY clause:

SELECT MAX(CreatedDate)
FROM Account LIMIT 1

• You can't use child relationship expressions that use the __r  syntax in a query that uses a GROUP BY  clause. For more information,
see Understanding Relationship Names, Custom Objects, and Custom Fields on page 57.

32

GROUP BYSalesforce Object Query Language (SOQL)

https://developer.salesforce.com/docs/atlas.en-us.204.0.api.meta/api/sforce_api_calls_describesobjects_describesobjectresult.htm


GROUP BY  and queryMore()

For queries that don't include a GROUP BY  clause, the query result object contains up to 500 rows of data by default. If the query
results exceed 500 rows, then your client application can use the queryMore() call and a server-side cursor to retrieve additional
rows in 500-row chunks.

However, if a query includes a GROUP BY  clause, you can't use queryMore(). You can increase the default size up to 2,000 in the
QueryOptions header. If your query results exceed 2,000 rows, you must change the filtering conditions to query data in smaller chunks.
There is no guarantee that the requested batch size will be the actual batch size. This is done to maximize performance. See Change the
Batch Size in Queries for more details.

GROUP BY  and Subtotals

If you want a query to do the work of calculating subtotals so that you don't have to maintain that logic in your code, see GROUP BY
ROLLUP. If you want to calculate subtotals for every possible combination of grouped field (to generate a cross-tabular report, for
example), see GROUP BY CUBE instead.

Using Aliases with GROUP BY

You can use an alias for any field or aggregated field in a SELECT  statement in a SOQL query. Use a field alias to identify the field when
you’re processing the query results in your code.

Specify the alias directly after the associated field. For example, the following query contains two aliases: n  for the Name  field, and
max  for the MAX(Amount)  aggregated field.

SELECT Name n, MAX(Amount) max
FROM Opportunity
GROUP BY Name

Any aggregated field in a SELECT list that does not have an alias automatically gets an implied alias with a format expri, where i
denotes the order of the aggregated fields with no explicit aliases. The value of i  starts at 0 and increments for every aggregated field
with no explicit alias.

In the following example, MAX(Amount)  has an implied alias of expr0, and MIN(Amount)  has an implied alias of expr1.

SELECT Name, MAX(Amount), MIN(Amount)
FROM Opportunity
GROUP BY Name

In the next query, MIN(Amount)  has an explicit alias of min. MAX(Amount)  has an implied alias of expr0, and SUM(Amount)
has an implied alias of expr1.

SELECT Name, MAX(Amount), MIN(Amount) min, SUM(Amount)
FROM Opportunity
GROUP BY Name

GROUP BY ROLLUP
Use the GROUP BY ROLLUP  optional clause in a SOQL query to add subtotals for aggregated data in query results. This action enables
the query to calculate subtotals so that you don’t have to maintain that logic in your code.

With API version 18.0 and later, you can use GROUP BY ROLLUP  with aggregate functions, such as SUM()  and
COUNT(fieldName). The syntax is:

[GROUP BY ROLLUP (fieldName[,...])]

33

GROUP BYSalesforce Object Query Language (SOQL)

https://developer.salesforce.com/docs/atlas.en-us.204.0.api.meta/api/sforce_api_calls_querymore.htm
https://developer.salesforce.com/docs/atlas.en-us.204.0.api.meta/api/sforce_api_calls_querymore.htm


A query with a GROUP BY ROLLUP  clause returns the same aggregated data as an equivalent query with a GROUP BY  clause. It
also returns multiple levels of subtotal rows. You can include up to three fields in a comma-separated list in a GROUP BY ROLLUP
clause.

The GROUP BY ROLLUP  clause adds subtotals at different levels, aggregating from right to left through the list of grouping columns.
The order of rollup fields is important. A query that includes three rollup fields returns the following rows for totals:

• First-level subtotals for each combination of fieldName1  and fieldName2. Results are grouped by fieldName3.

• Second-level subtotals for each value of fieldName1. Results are grouped by fieldName2  and fieldName3.

• One grand total row

Note:

• You can't combine GROUP BY  and GROUP BY ROLLUP  syntax in the same statement. For example, GROUP BY
ROLLUP(field1), field2  is not valid as all grouped fields must be within the parentheses.

• If you want to compile a cross-tabular report including subtotals for every possible combination of fields in a GROUP BY
clause, use GROUP BY CUBE instead.

Grouping By One Rollup Field
This simple example rolls the results up by one field:

SELECT LeadSource, COUNT(Name) cnt
FROM Lead
GROUP BY ROLLUP(LeadSource)

The following table shows the query results. Note that the aggregated results include an extra row with a null  value for LeadSource
that gives a grand total for all the groupings. Since there is only one rollup field, there are no other subtotals.

cntLeadSource

7Web

4Phone Inquiry

4Partner Referral

7Purchased List

22null

Grouping By Two Rollup Fields
This example rolls the results up by two fields:

SELECT Status, LeadSource, COUNT(Name) cnt
FROM Lead
GROUP BY ROLLUP(Status, LeadSource)

The following table shows the query results. Note the first-level subtotals and grand total rows. The Comment column explains each
row.

34

GROUP BYSalesforce Object Query Language (SOQL)



CommentcntLeadSourceStatus

One lead with Status  = Open - Not Contacted  and
LeadSource  = Web

1WebOpen - Not
Contacted

One lead with Status  = Open - Not Contacted  and
LeadSource  = Phone Inquiry

1Phone InquiryOpen - Not
Contacted

One lead with Status  = Open - Not Contacted  and
LeadSource  = Purchased List

1Purchased ListOpen - Not
Contacted

First-level subtotal for all leads with Status  = Open - Not
Contacted

3nullOpen - Not
Contacted

Four leads with Status  = Working - Contacted  and
LeadSource  = Web

4WebWorking -
Contacted

One lead with Status  = Working - Contacted  and
LeadSource  = Phone Inquiry

1Phone InquiryWorking -
Contacted

Three leads with Status  = Working - Contacted  and
LeadSource  = Partner Referral

3Partner ReferralWorking -
Contacted

Four leads with Status  = Working - Contacted  and
LeadSource  = Purchased List

4Purchased ListWorking -
Contacted

First-level subtotal for all leads with Status  = Working -
Contacted

12nullWorking -
Contacted

One lead with Status  = Closed - Converted  and
LeadSource  = Web

1WebClosed -
Converted

One lead with Status  = Closed - Converted  and
LeadSource  = Phone Inquiry

1Phone InquiryClosed -
Converted

One lead with Status  = Closed - Converted  and
LeadSource  = Purchased List

1Purchased ListClosed -
Converted

First-level subtotal for all leads with Status  = Closed -
Converted

3nullClosed -
Converted

One lead with Status  = Closed - Not Converted  and
LeadSource  = Web

1WebClosed - Not
Converted

One lead with Status  = Closed - Not Converted  and
LeadSource  = Phone Inquiry

1Phone InquiryClosed - Not
Converted

One lead with Status  = Closed - Not Converted  and
LeadSource  = Partner Referral

1Partner ReferralClosed - Not
Converted

One lead with Status  = Closed - Not Converted  and
LeadSource  = Purchased List

1Purchased ListClosed - Not
Converted

First-level subtotal for all leads with Status  = Closed - Not
Converted

4nullClosed - Not
Converted

Grand total of 22 leads22nullnull

35

GROUP BYSalesforce Object Query Language (SOQL)



These examples use the COUNT(fieldName) aggregate function, but the syntax works with any aggregate function. You can also
group by three rollup fields, which returns even more subtotal rows.

Using GROUPING(fieldName)  to Identify Subtotals
You can use the GROUPING(fieldName)  function to determine whether a row is a subtotal or field when you use GROUP BY
ROLLUP  or GROUP BY CUBE  in SOQL queries.

The GROUP BY ROLLUP or GROUP BY CUBE clause adds the subtotals, and then the GROUPING(fieldName)  function identifies
whether the row is a subtotal for a field.

If you are iterating through the query result to create a report or chart of the data, you have to distinguish between aggregated data
and subtotal rows. You can use GROUPING(fieldName)  to do this. Using GROUPING(fieldName)  is more important for
interpreting your results when you have more than one field in your GROUP BY ROLLUP  or GROUP BY CUBE  clause. It is the
best way to differentiate between aggregated data and subtotals.

GROUPING(fieldName)  returns 1  if the row is a subtotal for the field, and 0  otherwise. You can use GROUPING(fieldName)
in SELECT, HAVING, and ORDER BY  clauses.

The easiest way to understand more is to look at a query and its results.

SELECT LeadSource, Rating,
GROUPING(LeadSource) grpLS, GROUPING(Rating) grpRating,
COUNT(Name) cnt

FROM Lead
GROUP BY ROLLUP(LeadSource, Rating)

The query returns subtotals for combinations of the LeadSource  and Rating  fields. GROUPING(LeadSource)  indicates if
the row is an aggregated row for the LeadSource  field, and GROUPING(Rating)  does the same for the Rating field.

The following table shows the query results. The Comment column explains each row.

CommentcntgrpRatinggrpLSRatingLeadSource

Five leads with LeadSource  = Web  with no Rating500nullWeb

One lead with LeadSource  = Web  with Rating  = Hot100HotWeb

One lead with LeadSource  = Web  with Rating  = Warm100WarmWeb

Subtotal of seven leads with LeadSource  = Web  (grpRating
= 1  indicates that result is grouped by the Rating  field)

710nullWeb

Four leads with LeadSource  = Phone Inquiry  with no
Rating

400nullPhone Inquiry

Subtotal of four leads with LeadSource  = Phone Inquiry
(grpRating  = 1  indicates that result is grouped by the Rating
field)

410nullPhone Inquiry

Four leads with LeadSource  = Partner Referral  with no
Rating

400nullPartner
Referral

Subtotal of four leads with LeadSource  = Partner Referral
(grpRating  = 1  indicates that result is grouped by the Rating
field)

410nullPartner
Referral

36

GROUP BYSalesforce Object Query Language (SOQL)



CommentcntgrpRatinggrpLSRatingLeadSource

Seven leads with LeadSource  = Purchased List  with no
Rating

700nullPurchased
List

Subtotal of seven leads with LeadSource  = Purchased List
(grpRating  = 1  indicates that result is grouped by the Rating
field)

710nullPurchased
List

Grand total of 22 leads (grpRating  = 1  and grpLS  = 1  indicates
this is the grand total)

2211nullnull

Tip:  The order of the fields listed in the GROUP BY ROLLUP  clause is important. For example, if you are more interested in
getting subtotals for each Rating  instead of for each LeadSource, switch the field order to GROUP BY ROLLUP(Rating,
LeadSource).

GROUP BY CUBE
Use the GROUP BY CUBE  clause in a SOQL query to add subtotals for all combinations of a grouped field in the query results. This
action is useful for compiling cross-tabular reports of data. For example, you can create a cross-tabular query to calculate a sum, an
average, or another aggregate function and then group the results by two sets of values: one horizontally, the other, vertically.

With API version 18.0 and later, you can use GROUP BY CUBE  with aggregate functions, such as SUM()  and COUNT(fieldName).

The syntax is:

[GROUP BY CUBE (fieldName[,...])]

A query with a GROUP BY CUBE  clause returns the same aggregated data as an equivalent query with a GROUP BY  clause. It also
returns additional subtotal rows for each combination of fields specified in the comma-separated grouping list, as well as a grand total.
You can include up to three fields in a GROUP BY CUBE clause.

Note:

• You can't combine GROUP BY  and GROUP BY CUBE  syntax in the same statement. For example, GROUP BY
CUBE(field1), field2  is not valid as all grouped fields must be within the parentheses.

• If you only want subtotals for a subset of the grouped field combinations, you should use GROUP BY ROLLUP instead.

The following query returns subtotals of accounts for each combination of Type  and BillingCountry:

SELECT Type, BillingCountry,
GROUPING(Type) grpType, GROUPING(BillingCountry) grpCty,
COUNT(id) accts

FROM Account
GROUP BY CUBE(Type, BillingCountry)
ORDER BY GROUPING(Type), GROUPING(BillingCountry)

The following table shows the query results. The query uses ORDER BY GROUPING(Type), GROUPING(BillingCountry)
so that the subtotal and grand total rows are returned after the aggregated data rows. This is not necessary, but it can help you when
you are iterating through the query results in your code. The Comment column explains each row.

37

GROUP BYSalesforce Object Query Language (SOQL)



CommentacctsgrpCtygrpTypeBillingCountryType

Six accounts with Type  = Customer - Direct  with
BillingCountry  = null

600nullCustomer -
Direct

One account with Type  = Customer - Channel  with
BillingCountry  = USA

100USACustomer -
Channel

Two accounts with Type  = Customer - Channel  with
BillingCountry  = null

200nullCustomer -
Channel

One account with Type  = Customer - Direct  with
BillingCountry  = USA

100USACustomer -
Direct

One account with Type  = Customer - Channel  with
BillingCountry  = France

100FranceCustomer -
Channel

One account with Type  = null  with BillingCountry
= USA

100USAnull

Subtotal of four accounts with Type  = Customer -
Channel  (grpCty  = 1  indicates that result is grouped by
the BillingCountry  field)

410nullCustomer -
Channel

Subtotal of seven accounts with Type  = Customer -
Direct  (grpCty  = 1  indicates that result is grouped by the
BillingCountry  field)

710nullCustomer -
Direct

Subtotal of one account with Type  = null  (grpCty  = 1
indicates that result is grouped by the BillingCountry field)

110nullnull

Subtotal of one account with BillingCountry  = France
(grpType  = 1  indicates that result is grouped by the Type
field)

101Francenull

Subtotal of three accounts with BillingCountry  = USA
(grpType  = 1  indicates that result is grouped by the Type
field)

301USAnull

Subtotal of eight accounts with BillingCountry  = null
(grpType  = 1  indicates that result is grouped by the Type
field)

801nullnull

Grand total of 12 accounts (grpType  = 1  and grpCty  = 1
indicates this is the grand total)

1211nullnull

You can use these query results to present a cross-tabular reports of the results.

TotalnullFranceUSAType/BillingCountry

7601Customer - Direct

4211Customer - Channel

38

GROUP BYSalesforce Object Query Language (SOQL)



TotalnullFranceUSAType/BillingCountry

1001null

12813Total

HAVING
HAVING  is an optional clause that can be used in a SOQL query to filter results that aggregate functions return.

With API version 18.0 and later, you can use a HAVING  clause with a GROUP BY  clause to filter the results returned by aggregate
functions, such as SUM(). The HAVING clause is similar to a WHERE  clause. The difference is that you can include aggregate functions
in a HAVING clause, but not in a WHERE  clause. The syntax is:

[HAVING havingConditionExpression]

havingConditionExpression  specifies one or more conditional expressions using aggregate functions to filter the query
results.

For example, you can use a GROUP BY  clause to determine how many leads are associated with each LeadSource  value with the
following query:

SELECT LeadSource, COUNT(Name)
FROM Lead
GROUP BY LeadSource

However, if you are only interested in LeadSource  values that have generated more than 100 leads, you can filter the results by
using a HAVING  clause. For example:

SELECT LeadSource, COUNT(Name)
FROM Lead
GROUP BY LeadSource
HAVING COUNT(Name) > 100

The next query returns accounts with duplicate names:

SELECT Name, Count(Id)
FROM Account
GROUP BY Name
HAVING Count(Id) > 1

For a list of aggregate functions supported by SOQL, see Aggregate Functions.

Considerations When Using HAVING
When you’re creating SOQL queries with a HAVING clause, there are some considerations to keep in mind.

• A HAVING  clause can filter by aggregated values. It can also contain filter by any fields included in the GROUP BY  clause. To filter
by any other field values, add the filtering condition to the WHERE  clause. For example, the following query is valid:

SELECT LeadSource, COUNT(Name)
FROM Lead
GROUP BY LeadSource
HAVING COUNT(Name) > 100 and LeadSource > 'Phone'

39

HAVINGSalesforce Object Query Language (SOQL)



The following query is invalid as City  is not included in the GROUP BY clause:

SELECT LeadSource, COUNT(Name)
FROM Lead
GROUP BY LeadSource
HAVING COUNT(Name) > 100 and City LIKE 'San%'

• Similar to a WHERE  clause, a HAVING  clause supports all the comparison operators, such as =, in conditional expressions, which
can contain multiple conditions using the logical AND, OR, and NOT  operators.

• A HAVING  clause can't contain any semi- or anti-joins. A semi-join is a subquery on another object in an IN  clause to restrict the
records returned. An anti-join is a subquery on another object in a NOT IN  clause to restrict the records returned.

TYPEOF
TYPEOF  is an optional clause that can be used in a SELECT  statement of a SOQL query when you’re querying data that contains
polymorphic relationships. A TYPEOF expression specifies a set of fields to select that depend on the runtime type of the polymorphic
reference.

Note: TYPEOF  is currently available as a Developer Preview as part of the SOQL Polymorphism feature. For more information
on enabling TYPEOF  for your organization, contact Salesforce.

TYPEOF  is available in API version 26.0 and later.

SELECT [fieldList,]
[TYPEOF typeOfField

{WHEN whenObjectType THEN whenFieldList}[...]
[ELSE elseFieldList]

END][...]
FROM objectType

You can use more than one TYPEOF  expression in a single SELECT  statement, if you need to query multiple polymorphic relationship
fields.

You can provide as many WHEN  clauses as needed, one per object type. The ELSE  clause is optional and used if the object type for
the polymorphic relationship field in the current record doesn’t match any of the object types in the provided WHEN  clauses. The syntax
specific to TYPEOF  is as follows.

DescriptionSyntax

Specifies a list of one or more fields, separated by commas, that you want to retrieve from
the specified objectType. This is the standard list of fields used in a SELECT  statement

fieldList

and used regardless of polymorphic relationship object types. If you’re only interested in
fields from objects referenced by polymorphic relationships, you can omit this list from your
SELECT  statement. This list of fields cannot reference relationship fields that are also
referenced in any typeOfField  fields used in the same query.

A polymorphic relationship field in objectType  or a polymorphic field in a parent of
objectType  that can reference multiple object types. For example, the What  relationship

typeOfField

field of an Event could be an Account, a Campaign, or an Opportunity. typeOfField
cannot reference a relationship field that is also referenced in fieldList.

40

TYPEOFSalesforce Object Query Language (SOQL)



DescriptionSyntax

An object type for the given WHEN  clause. When the SELECT  statement runs, each object
type associated with the polymorphic relationship field specified in the typeOfField
expression is checked for a matching object type in a WHEN clause.

whenObjectType

A list of one or more fields, separated by commas, that you want to retrieve from the specified
whenObjectType. These are fields in the referenced object type or paths to related object
fields, not fields in the primary object type for the SELECT  statement.

whenFieldList

A list of one or more fields, separated by commas, that you want to retrieve if none of the
WHEN clauses match the object type associated with the polymorphic relationship field

elseFieldList

specified in typeOfField. This list may only contain fields valid for the Name object type,
or paths to related object fields in Name.

Specifies the type of object you want to query. This is the standard object type required in a
SELECT  statement.

objectType

Note the following considerations for using TYPEOF:

• TYPEOF  is only allowed in the SELECT  clause of a query. You can filter on the object type of a polymorphic relationship using
the Type qualifier in a WHERE  clause, see Filtering on Polymorphic Relationship Fields for more details.

• TYPEOF  isn’t allowed in queries that don’t return objects, such as COUNT()  and aggregate queries.

• TYPEOF  can’t be used in SOQL queries that are the basis of Streaming API PushTopics.

• TYPEOF  can’t be used in SOQL used in Bulk API.

• TYPEOF  expressions can’t be nested. For example, you can’t use TYPEOF  inside the WHEN clause of another TYPEOF  expression.

• TYPEOF  isn’t allowed in the SELECT  clause of a semi-join query. You can use TYPEOF  in the SELECT  clause of an outer query
that contains semi-join queries. The following example is not valid:

SELECT Name FROM Account
WHERE CreatedById IN

(
SELECT

TYPEOF Owner
WHEN User THEN Id
WHEN Group THEN CreatedById

END
FROM CASE
)

The following semi-join clause is valid because TYPEOF  is only used in the outer SELECT clause:

SELECT
TYPEOF What

WHEN Account THEN Phone
ELSE Name

END
FROM Event
WHERE CreatedById IN

(
SELECT CreatedById

41

TYPEOFSalesforce Object Query Language (SOQL)



FROM Case
)

• GROUP BY, GROUP BY ROLLUP, GROUP BY CUBE, and HAVING aren’t allowed in queries that use TYPEOF.

The following example selects specific fields depending on whether the What  field of an Event references an Account or Opportunity.

SELECT
TYPEOF What
WHEN Account THEN Phone, NumberOfEmployees
WHEN Opportunity THEN Amount, CloseDate
ELSE Name, Email

END
FROM Event

See Understanding Polymorphic Keys and Relationships for more details on polymorphic relationships, and additional examples of
TYPEOF.

FORMAT ()
Use FORMAT  with the SELECT  clause to apply localized formatting to standard and custom number, date, time, and currency fields.

When the FORMAT  function is applied these fields reflect the appropriate format for the given user locale. The field format matches
what appears in the Salesforce Classic user interface. For example, the date December 28, 2015 can appear numerically as 2015-12-28,
28-12-2015, 28/12/2015, 12/28/2015, or 28.12.2015, depending on the org’s locale setting.

This example is for an org that has multiple currencies enabled.

SELECT FORMAT(amount) Amt, format(lastModifiedDate) editDate FROM Opportunity
editDate = "7/2/2015 3:11 AM"
Amt = "AED 1,500.000000 (USD 1,000.00)"

The FORMAT  function supports aliasing. In addition, aliasing is required when the query includes the same field multiple times. For
example:

SELECT Id, LastModifiedDate, FORMAT(LastModifiedDate) formattedDate FROM Account

You can also nest it with aggregate or convertCurrency() functions. For example:

SELECT amount, FORMAT(amount) Amt, convertCurrency(amount) editDate,
FORMAT(convertCurrency(amount)) convertedCurrency FROM Opportunity where id = '12345'
SELECT FORMAT(MIN(closedate)) Amt FROM opportunity

FOR VIEW
Salesforce stores information about record views in the interface and uses the information to generate a list of recently viewed and
referenced records, such as a list of records in a sidebar and for a list of records as auto-complete options in search. You can update
objects with information about when they were last viewed by using the FOR VIEW  clause in a SOQL query.

Consider using the FOR VIEW  clause in conjunction with the FOR REFERENCE clause to update recent usage data for retrieved
objects.

When this clause is used with a query, two things happen:

• The LastViewedDate  field for the retrieved record is updated.

• A record is added to the RecentlyViewed object to reflect the recently viewed data for the retrieved record.

42

FORMAT ()Salesforce Object Query Language (SOQL)



Note:

• Use this clause only when you are sure that the retrieved records will definitely be viewed by the logged-in user, else the clause
falsely updates the usage information for the records. Also, the user won’t recognize any falsely updated records when they
display in the Recent Items and the global search auto-complete lists.

• The RecentlyViewed object is updated every time the logged-in user views or references a record. It is also updated when
records are retrieved using the FOR VIEW  or FOR REFERENCE  clause in a SOQL query. To ensure that the most recent
data is available, RecentlyViewed data is periodically truncated down to 200 records per object.

This is an example of a SOQL query that retrieves one contact to show to the current user and uses FOR VIEW  to update the last
viewed date of the retrieved contact. The same statement both retrieves the record and updates its last viewed date.

SELECT Name, ID FROM Contact LIMIT 1 FOR VIEW

FOR REFERENCE
FOR REFERENCE  is an optional clause that can be used in a SOQL query to notify Salesforce when a record is referenced from a
custom interface, such as in a mobile application or from a custom page. Consider using this clause with the FOR VIEW  clause to
update recent usage data for retrieved objects.

A record is referenced every time a related record is viewed. For example, when a user views an account record, all related records (such
as contacts, owner, leads, opportunities) are referenced. Consider using the FOR REFERENCE  clause with the FOR VIEW clause to
update recent usage data for retrieved objects.

When this clause is used with a query, two things happen:

• The LastReferencedDate  field is updated for any retrieved records.

• A record is added to the RecentlyViewed object to reflect the recently referenced data for each retrieved record.

Note:

• Use this clause only when you’re certain that the records affected by the query will be referenced, else the clause falsely updates
the recently referenced information for any retrieved records. Also, the user won’t recognize any falsely updated records when
they display in the Recent Items and the global search auto-complete lists.

• The RecentlyViewed object is updated every time the logged-in user views or references a record. It is also updated when
records are retrieved using the FOR VIEW  or FOR REFERENCE  clause in a SOQL query. To ensure that the most recent
data is available, RecentlyViewed data is periodically truncated down to 200 records per object.

This is an example of a SOQL query that retrieves a contact and uses FOR REFERENCE  to update the LastReferencedDate
field of the retrieved contact.

SELECT Name, ID FROM Contact LIMIT 1 FOR REFERENCE

FOR UPDATE
In Apex, you can use FOR UPDATE  to lock sObject records while they’re being updated in order to prevent race conditions and other
thread safety problems.

While an sObject record is locked, no other client or user is allowed to make updates either through code or the Salesforce user interface.
The client locking the records can perform logic on the records and make updates with the guarantee that the locked records won’t be
changed by another client during the lock period. The lock gets released when the transaction completes.

43

FOR REFERENCESalesforce Object Query Language (SOQL)



To lock a set of sObject records in Apex, embed the keywords FOR UPDATE  after any inline SOQL statement. For example, the following
statement, in addition to querying for two accounts, also locks the accounts that are returned:

Account [] accts = [SELECT Id FROM Account LIMIT 2 FOR UPDATE];

Note:  You can’t use the ORDER BY  keywords in any SOQL query that uses locking.

Locking Considerations
• While the records are locked by a client, the locking client can modify their field values in the database in the same transaction. Other

clients have to wait until the transaction completes and the records are no longer locked before being able to update the same
records. Other clients can still query the same records while they’re locked.

• If you attempt to lock a record currently locked by another client, your process waits for the lock to be released before acquiring a
new lock. If the lock isn’t released within 10 seconds, you will get a QueryException. Similarly, if you attempt to update a record
currently locked by another client and the lock isn’t released within 10 seconds, you will get a DmlException.

• If a client attempts to modify a locked record, the update operation might succeed if the lock gets released within a short amount
of time after the update call was made. In this case, it is possible that the updates will overwrite those made by the locking client if
the second client obtained an old copy of the record. To prevent this from happening, the second client must lock the record first.
The locking process returns a fresh copy of the record from the database through the SELECT  statement. The second client can
use this copy to make new updates.

• When you perform a DML operation on one record, related records are locked in addition to the record in question. For more
information, see the Record Locking Cheat Sheet.

Warning:  Use care when setting locks in your Apex code. See Avoiding Deadlocks in the Apex Guide for more information.

Aggregate Functions
Use aggregate functions in a GROUP BY  clause in SOQL queries to generate reports for analysis. Aggregate functions include AVG(),
COUNT(), MIN(), MAX(), SUM(), and more.

You can also use aggregate functions without using a GROUP BY  clause. For example, you could use the AVG()  aggregate function
to find the average Amount  for all your opportunities.

SELECT AVG(Amount)
FROM Opportunity

However, these functions become a more powerful tool to generate reports when you use them with a GROUP BY clause. For example,
you could find the average Amount  for all your opportunities by campaign.

SELECT CampaignId, AVG(Amount)
FROM Opportunity
GROUP BY CampaignId

This table lists all the aggregate functions supported by SOQL.

DescriptionAggregate Function

Returns the average value of a numeric field. For example:

SELECT CampaignId, AVG(Amount)
FROM Opportunity
GROUP BY CampaignId

AVG()

44

Aggregate FunctionsSalesforce Object Query Language (SOQL)

https://developer.salesforce.com/page/Cheat_Sheets


DescriptionAggregate Function

Available in API version 18.0 and later.

Returns the number of rows matching the query criteria. For example using COUNT():

SELECT COUNT()
FROM Account
WHERE Name LIKE 'a%'

COUNT()  and
COUNT(fieldName)

For example using COUNT(fieldName):

SELECT COUNT(Id)
FROM Account
WHERE Name LIKE 'a%'

Note: COUNT(Id)  in SOQL is equivalent to COUNT(*)  in SQL.

The COUNT(fieldName)  syntax is available in API version 18.0 and later. If you are using a
GROUP BY clause, use COUNT(fieldName) instead of COUNT(). For more information, see
COUNT()  and COUNT(fieldName).

Returns the number of distinct non-null  field values matching the query criteria. For example:

SELECT COUNT_DISTINCT(Company)
FROM Lead

COUNT_DISTINCT()

Note: COUNT_DISTINCT(fieldName)  in SOQL is equivalent to COUNT(DISTINCT
fieldName) in SQL. To query for all the distinct values, including null, for an object,
see GROUP BY.

Available in API version 18.0 and later.

Returns the minimum value of a field. For example:

SELECT MIN(CreatedDate), FirstName, LastName
FROM Contact
GROUP BY FirstName, LastName

MIN()

If you use the MIN() or MAX()  functions on a picklist field, the function uses the sort order of the
picklist values instead of alphabetical order.

Available in API version 18.0 and later.

Returns the maximum value of a field. For example:

SELECT Name, MAX(BudgetedCost)
FROM Campaign
GROUP BY Name

MAX()

Available in API version 18.0 and later.

45

Aggregate FunctionsSalesforce Object Query Language (SOQL)



DescriptionAggregate Function

Returns the total sum of a numeric field. For example:

SELECT SUM(Amount)
FROM Opportunity
WHERE IsClosed = false AND Probability > 60

SUM()

Available in API version 18.0 and later.

You can't use a LIMIT  clause in a query that uses an aggregate function, but does not use a GROUP BY  clause. For example, the
following query is invalid:

SELECT MAX(CreatedDate)
FROM Account LIMIT 1

COUNT()  and COUNT(fieldName)
COUNT()  is an optional clause that can be used in a SELECT  statement in a SOQL query to discover the number of rows that a query
returns.

There are two versions of syntax for COUNT():

• COUNT()

• COUNT(fieldName)

If you are using a GROUP BY clause, use COUNT(fieldName) instead of COUNT().

COUNT()

COUNT()  returns the number of rows that match the filtering conditions.

For example:

SELECT COUNT()
FROM Account
WHERE Name LIKE 'a%'

SELECT COUNT()
FROM Contact, Contact.Account
WHERE Account.Name = 'MyriadPubs'

For COUNT(), the query result size field returns the number of rows. The records  field returns null.

Note the following when using COUNT():

• COUNT()  must be the only element in the SELECT  list.

• You can use COUNT()  with a LIMIT  clause.

• You can't use COUNT()  with an ORDER BY  clause. Use COUNT(fieldName) instead.

• You can't use COUNT() with a GROUP BY  clause for API version 19.0 and later. Use COUNT(fieldName) instead.

46

Aggregate FunctionsSalesforce Object Query Language (SOQL)



COUNT(fieldName)

COUNT(fieldName)  returns the number of rows that match the filtering conditions and have a non-null  value for fieldName.
This syntax is newer than COUNT()  and is available in API version 18.0 and later.

For example:

SELECT COUNT(Id)
FROM Account
WHERE Name LIKE 'a%'

COUNT(Id)  returns the same count as COUNT(), so the previous and next queries are equivalent:

SELECT COUNT()
FROM Account
WHERE Name LIKE 'a%'

Note: COUNT(Id)  in SOQL is equivalent to COUNT(*)  in SQL.

For COUNT(fieldName), the AggregateResult object in the records  field returns the number of rows. The size  field does not
reflect the count. For example:

SELECT COUNT(Id)
FROM Account
WHERE Name LIKE 'a%'

For this query, the count is returned in the expr0  field of the AggregateResult object. For more information, see Using Aliases with
GROUP BY.

There are advantages to using COUNT(fieldName)  instead of COUNT(). You can include multiple COUNT(fieldName)
items in a SELECT  clause. For example, the following query returns the number of opportunities, as well as the number of opportunities
associated with a campaign.

SELECT COUNT(Id), COUNT(CampaignId)
FROM Opportunity

Unlike COUNT(), you can use a GROUP BY  clause with COUNT(fieldName)  in API version 18.0 and later. This allows you to
analyze your records and return summary reporting information. For example, the following query returns the number of leads for each
LeadSource value:

SELECT LeadSource, COUNT(Name)
FROM Lead
GROUP BY LeadSource

Support for Field Types in Aggregate Functions
Using aggregate functions in SOQL queries is a powerful way to analyze records, but the functions aren’t relevant for all field types. For
example, base64 fields don’t support aggregate functions, because they wouldn’t generate any meaningful data.

Aggregate functions are supported for several primitive data types and field types. The following table lists support by the aggregate
functions for the primitive data types.

SUM()MAX()MIN()COUNT_DISTINCT()COUNT()AVG()Data Type

NoNoNoNoNoNobase64

NoNoNoNoNoNoboolean

47

Aggregate FunctionsSalesforce Object Query Language (SOQL)

https://developer.salesforce.com/docs/atlas.en-us.204.0.api.meta/api/primitive_data_types.htm


SUM()MAX()MIN()COUNT_DISTINCT()COUNT()AVG()Data Type

NoNoNoNoNoNobyte

NoYesYesYesYesNodate

NoYesYesYesYesNodateTime

YesYesYesYesYesYesdouble

YesYesYesYesYesYesint

NoYesYesYesYesNostring

NoNoNoNoNoNotime

In addition to the primitive data types, the API uses an extended set of field types for object fields. The following table lists support by
the aggregate functions for these field types.

SUM()MAX()MIN()COUNT_DISTINCT()COUNT()AVG()Data Type

NoNoNoNoNoNoaddress

NoNoNoNoNoNoanyType

Depends on
data type*

Depends on
data type*

Depends on
data type*

Depends on data
type*

Depends on
data type*

Depends on
data type*

calculated

NoYesYesYesYesNocombobox

YesYesYesYesYesYescurrency**

NoYesYesYesYesNoDataCategoryGroupReference

NoYesYesYesYesNoemail

NoNoNoNoNoNoencryptedstring

NoNoNoNoNoNolocation

NoYesYesYesYesNoID

NoYesYesYesYesNomasterrecord

NoNoNoNoNoNomultipicklist

YesYesYesYesYesYespercent

NoYesYesYesYesNophone

NoYesYesYesYesNopicklist

NoYesYesYesYesNoreference

NoYesYesYesYesNotextarea

NoYesYesYesYesNourl

48

Aggregate FunctionsSalesforce Object Query Language (SOQL)

https://developer.salesforce.com/docs/atlas.en-us.204.0.api.meta/api/field_types.htm


* Calculated fields are custom fields defined by a formula, which is an algorithm that derives its value from other fields, expressions, or
values. Therefore, support for aggregate functions depends on the type of the calculated field.
** Aggregate function results on currency fields default to the system currency.

Tip: Some object fields have a field type that does not support grouping. You can't include fields with these field types in a GROUP
BY  clause. The Field object associated with DescribeSObjectResult has a groupable  field that defines whether you can include
the field in a GROUP BY  clause.

Date Functions
Date functions in SOQL queries allow you to group or filter data by date periods such as day, calendar month, or fiscal year.

For example, you could use the CALENDAR_YEAR()  function to find the sum of the Amount values for all your opportunities for
each calendar year.

SELECT CALENDAR_YEAR(CreatedDate), SUM(Amount)
FROM Opportunity
GROUP BY CALENDAR_YEAR(CreatedDate)

Date functions are available in API version 18.0 and later.

Note: SOQL queries in a client application return dateTime field values as Coordinated Universal Time (UTC) values. To convert
dateTime field values to your default time zone, see Converting Time Zones in Date Functions.

This table lists all the date functions supported by SOQL.

ExamplesDescriptionDate Function

Returns a number representing the calendar month of a
date field.

CALENDAR_MONTH() • 1  for January

• 12  for December

Returns a number representing the calendar quarter of a
date field.

CALENDAR_QUARTER() • 1  for January 1 through March 31

• 2  for April 1 through June 30

• 3  for July 1 through September 30

• 4  for October 1 through December 31

2009Returns a number representing the calendar year of a date
field.

CALENDAR_YEAR()

20  for February 20Returns a number representing the day in the month of
a date field.

DAY_IN_MONTH()

Returns a number representing the day of the week for a
date field.

DAY_IN_WEEK() • 1  for Sunday

• 7  for Saturday

32  for February 1Returns a number representing the day in the year for a
date field.

DAY_IN_YEAR()

2009-09-22  for September 22, 2009

You can only use DAY_ONLY()  with dateTime
fields.

Returns a date representing the day portion of a dateTime
field.

DAY_ONLY()

49

Date FunctionsSalesforce Object Query Language (SOQL)

https://developer.salesforce.com/docs/atlas.en-us.204.0.api.meta/api/sforce_api_calls_describesobjects_describesobjectresult.htm


ExamplesDescriptionDate Function

If your fiscal year starts in March:Returns a number representing the fiscal month of a date
field. This differs from CALENDAR_MONTH()  if your

FISCAL_MONTH()

• 1  for March
organization uses a fiscal year that does not match the
Gregorian calendar. • 12  for February

See “Set the Fiscal Year” in the Salesforce online
help.Note: This function is not supported if your

organization has custom fiscal years enabled. See
"Define Your Fiscal Year" in the Salesforce Help.

If your fiscal year starts in July:Returns a number representing the fiscal quarter of a date
field. This differs from CALENDAR_QUARTER()  if your

FISCAL_QUARTER()

• 1  for July 15
organization uses a fiscal year that does not match the
Gregorian calendar. • 4  for June 6

Note: This function is not supported if your
organization has custom fiscal years enabled. See
"Define Your Fiscal Year" in the Salesforce Help.

2009Returns a number representing the fiscal year of a date
field. This differs from CALENDAR_YEAR()  if your

FISCAL_YEAR()

organization uses a fiscal year that does not match the
Gregorian calendar.

Note: This function is not supported if your
organization has custom fiscal years enabled. See
"Define Your Fiscal Year" in the Salesforce Help.

18  for a time of 18:23:10

You can only use HOUR_IN_DAY()  with
dateTime fields.

Returns a number representing the hour in the day for a
dateTime field.

HOUR_IN_DAY()

2  for April 10

The first week is from the first through the
seventh day of the month.

Returns a number representing the week in the month
for a date field.

WEEK_IN_MONTH()

1  for January 3

The first week is from January 1 through January
7.

Returns a number representing the week in the year for
a date field.

WEEK_IN_YEAR()

Note the following when you use date functions:

• You can use a date function in a WHERE  clause to filter your results even if your query doesn't include a GROUP BY  clause. The
following query returns data for 2009:

SELECT CreatedDate, Amount
FROM Opportunity
WHERE CALENDAR_YEAR(CreatedDate) = 2009

50

Date FunctionsSalesforce Object Query Language (SOQL)



• You can't compare the result of a date function with a date literal in a WHERE  clause. The following query doesn't work:

SELECT CreatedDate, Amount
FROM Opportunity
WHERE CALENDAR_YEAR(CreatedDate) = THIS_YEAR

• You can't use a date function in a SELECT  clause unless you also include it in the GROUP BY  clause. There is an exception if the
field used in the date function is a date field. You can use the date field instead of the date function in the GROUP BY  clause. This
doesn't work for dateTime fields. The following query doesn't work because CALENDAR_YEAR(CreatedDate)  is not in a
GROUP BY clause:

SELECT CALENDAR_YEAR(CreatedDate), Amount
FROM Opportunity

The following query works because the date field, CloseDate, is in the GROUP BY  clause. This wouldn't work for a dateTime
field, such as CreatedDate.

SELECT CALENDAR_YEAR(CloseDate)
FROM Opportunity
GROUP BY CALENDAR_YEAR(CloseDate)

Converting Time Zones in Date Functions
SOQL queries in a client application return dateTime field values as Coordinated Universal Time (UTC) values. You can use
convertTimezone()  in a date function to convert dateTime fields to the user’s time zone.

For example, you could use the convertTimezone(dateTimeField)  function to find the sum of the Amount  values for all
your opportunities for each hour of the day, where the hour is converted to the user's time zone.

SELECT HOUR_IN_DAY(convertTimezone(CreatedDate)), SUM(Amount)
FROM Opportunity
GROUP BY HOUR_IN_DAY(convertTimezone(CreatedDate))

Note that you can only use convertTimezone()  in a date function. The following query doesn't work because there is no date
function.

SELECT convertTimezone(CreatedDate)
FROM Opportunity

Querying Currency Fields in Multi-currency Orgs
Use convertCurrency()  in the SELECT  statement of a SOQL query to convert currency fields to the user’s currency. This action
requires that the org has multiple currencies enabled.

The following syntax is for using convertCurrency()  with the SELECT  clause:

convertCurrency(field)

For example:

SELECT Id, convertCurrency(AnnualRevenue)
FROM Account

51

Querying Currency Fields in Multi-currency OrgsSalesforce Object Query Language (SOQL)



Use an ISO code that your org has enabled and made active. If you don’t put in an ISO code, the numeric value is used instead of
comparative amounts. Using the previous example, opportunity records with JPY5001, EUR5001, and USD5001  would be returned.
If you use IN in a WHERE  clause, you can’t mix ISO code and non-ISO code values.

To format currencies according to the user’s local, use FORMAT() with SELECT()  statements. In this example,
convertedCurrency  is an alias for the returned amount, which is formatted appropriately in the user interface.

SELECT amount, FORMAT(amount) Amt, convertCurrency(amount) editDate,
FORMAT(convertCurrency(amount)) convertedCurrency FROM Opportunity where id = <>
SELECT FORMAT(MIN(closedate)) Amt FROM opportunity

If an org has enabled advanced currency management, dated exchange rates are used when converting currency fields on opportunities,
opportunity line items, and opportunity history. With advanced currency management, convertCurrency  uses the conversion
rate that corresponds to a given field (for example, CloseDate on opportunities). When advanced currency management
isn’t enabled, the most recent conversion date entered is used.

Considerations and Workarounds
You can’t use the convertCurrency() function in a WHERE  clause. If you do, an error is returned. Use the following syntax to
convert a numeric value to the user’s currency from any active currency in your org.

WHERE Object_name Operator ISO_CODEvalue

For example:

SELECT Id, Name
FROM Opportunity
WHERE Amount > USD5000

In this example, opportunity records are returned if the record’s currency Amount  value is greater than the equivalent of USD5000. For
example, an opportunity with an amount of USD5001  is returned, but not JPY7000.

You can’t convert the result of an aggregate function into the user’s currency by calling the convertCurrency()  function. If a
query includes a GROUP BY  or HAVING clause, currency data returned by using an aggregate function, such as SUM()  or MAX(),
is in the org’s default currency.

For example:

SELECT Name, MAX(Amount)
FROM Opportunity
GROUP BY Name
HAVING MAX(Amount) > 10000

You can’t use ISO_CODEvalue  to represent a value in a particular currency, such as USD, when you use an aggregate function. For
example, the following query does’t work.

SELECT Name, MAX(Amount)
FROM Opportunity
GROUP BY Name
HAVING MAX(Amount) > USD10000

You can’t use convertCurrency()  with ORDER BY. Ordering is always based on the converted currency value, just like in reports.

Example SELECT Clauses
The following are examples of text searches that use SOQL.

52

Example SELECT ClausesSalesforce Object Query Language (SOQL)



Example(s)Type of Search

SELECT Id, Name, BillingCity FROM AccountSimple query

SELECT Id FROM Contact WHERE Name LIKE 'A%' AND
MailingCity = 'California'

WHERE

SELECT Name FROM Account ORDER BY Name DESC NULLS LASTORDER BY

SELECT Name FROM Account WHERE Industry = 'media' LIMIT
125

LIMIT

SELECT Name FROM Account WHERE Industry = 'media' ORDER
BY BillingPostalCode ASC NULLS LAST LIMIT 125

ORDER BY  with LIMIT

SELECT COUNT() FROM Contactcount()

SELECT LeadSource, COUNT(Name) FROM Lead GROUP BY
LeadSource

GROUP BY

SELECT Name, COUNT(Id) FROM Account GROUP BY Name HAVING
COUNT(Id) > 1

HAVING

SELECT Name, Id FROM Merchandise__c ORDER BY Name OFFSET
100

OFFSET  with ORDER BY

SELECT Name, Id FROM Merchandise__c ORDER BY Name LIMIT
20 OFFSET 100

OFFSET  with ORDER BY  and LIMIT

SELECT Contact.FirstName, Contact.Account.Name FROM
Contact

SELECT Id, Name, Account.Name FROM Contact WHERE
Account.Industry = 'media'

Relationship queries: child-to-parent

SELECT Name, (SELECT LastName FROM Contacts) FROM Account

SELECT Account.Name, (SELECT Contact.LastName FROM
Account.Contacts) FROM Account

Relationship queries: parent-to-child

SELECT Name, (SELECT LastName FROM Contacts WHERE
CreatedBy.Alias = 'x') FROM Account WHERE Industry =
'media'

Relationship query with WHERE

SELECT Id, FirstName__c, Mother_of_Child__r.FirstName__c
FROM Daughter__c WHERE Mother_of_Child__r.LastName__c
LIKE 'C%'

Relationship query: child-to parent with
custom objects

SELECT Name, (SELECT Name FROM Line_Items__r) FROM
Merchandise__c WHERE Name LIKE ‘Acme%’

Relationship query: parent to child with
custom objects

SELECT Id, Owner.Name FROM Task WHERE Owner.FirstName
like 'B%'

SELECT Id, Who.FirstName, Who.LastName FROM Task WHERE
Owner.FirstName LIKE 'B%'

Relationship queries with polymorphic key

53

Example SELECT ClausesSalesforce Object Query Language (SOQL)



Example(s)Type of Search

SELECT Id, What.Name FROM Event

SELECT TYPEOF What WHEN Account THEN Phone,
NumberOfEmployees WHEN Opportunity THEN Amount, CloseDate
ELSE Name, Email END FROM Event

Polymorphic relationship queries using
TYPEOF

Note: TYPEOF  is currently available as a Developer Preview as part of the SOQL
Polymorphism feature. For more information on enabling TYPEOF  for your
organization, contact Salesforce.

SELECT Name, (SELECT CreatedBy.Name FROM Notes) FROM
Account

SELECT Amount, Id, Name, (SELECT Quantity, ListPrice,
PricebookEntry.UnitPrice, PricebookEntry.Name FROM
OpportunityLineItems) FROM Opportunity

Relationship queries with aggregate

SELECT UserId, LoginTime from LoginHistorySimple query: the UserId and LoginTime for
each user

SELECT UserId, COUNT(Id) from LoginHistory WHERE
LoginTime > 2010-09-20T22:16:30.000Z AND LoginTime <
2010-09-21T22:16:30.000Z GROUP BY UserId

Relationship queries with number of logins
per user in a specific time range

Note: Apex requires that you surround SOQL and SOSL statements with square brackets to use them on the fly. You can use Apex
script variables and expressions when preceded by a colon (:).

Relationship Queries

Client applications need to be able to query for more than a single type of object at a time. SOQL provides syntax to support these types
of queries, called relationship queries, against standard objects and custom objects. Relationship queries traverse parent-to-child and
child-to-parent relationships between objects to filter and return results.

Relationship queries are similar to SQL joins. However, you cannot perform arbitrary SQL joins. The relationship queries in SOQL must
traverse a valid relationship path as defined in the rest of this section.

You can use relationship queries to return objects of one type based on criteria that applies to objects of another type, for example,
“return all accounts created by Bob Jones and the contacts associated with those accounts.” There must be a parent-to-child or
child-to-parent relationship connecting the objects. You can’t write arbitrary queries such as “return all accounts and users created by
Bob Jones.”

Use the following topics to understand and use relationship queries in SOQL.

• Understanding Relationship Names

• Using Relationship Queries

• Understanding Relationship Names, Custom Objects, and Custom Fields

• Understanding Query Results

• Lookup Relationships and Outer Joins

54

Relationship QueriesSalesforce Object Query Language (SOQL)



• Identifying Parent and Child Relationships

• Understanding Polymorphic Keys and Relationships

• Understanding Relationship Query Limitations

• Using Relationship Queries with History Objects

• Using Relationship Queries with Data Category Selection Objects

• Using Relationship Queries with the Partner WSDL

Understanding Relationship Names
Parent-to-child and child-to-parent relationships exist between many types of objects. For example, Account is a parent of Contact.

To be able to traverse these relationships for standard objects, a relationship name is given to each relationship. The form of the name
is different, depending on the direction of the relationship:

• For child-to-parent relationships, the relationship name to the parent is the name of the foreign key, and there is a
relationshipName  property that holds the reference to the parent object. For example, the Contact child object has a
child-to-parent relationship to the Account object, so the value of relationshipName  in Contact is Account. These
relationships are traversed by specifying the parent using dot notation in the query, for example:

SELECT Contact.FirstName, Contact.Account.Name from Contact

This query returns the first names of all the contacts in the organization, and for each contact, the account name associated with
(parent of) that contact.

• For parent-to-child relationships, the parent object has a name for the child relationship that is unique to the parent, the plural of
the child object name. For example, Account has child relationships to Assets, Cases, and Contacts among other objects, and has a
relationshipName  for each, Assets, Cases, and Contacts.These relationships can be traversed only in the SELECT
clause, using a nested SOQL query. For example:

SELECT Account.Name, (SELECT Contact.FirstName, Contact.LastName FROM Account.Contacts)
FROM Account

This query returns all accounts, and for each account, the first and last name of each contact associated with (the child of) that
account.

Warning:  You must use the correct naming convention and SELECT  syntax for the direction of the relationship. For information
about how to discover relationship names via your organization's WSDL or describeSObjects(), see Identifying Parent
and Child Relationships. There are limitations on relationship queries depending on the direction of the relationship. See
Understanding Relationship Query Limitations for more information.

55

Understanding Relationship NamesSalesforce Object Query Language (SOQL)



Relationship names are somewhat different for custom objects, though the SELECT  syntax is the same. See Identifying Parent and
Child Relationships for more information.

Using Relationship Queries
Use SOQL to query several relationship types.

You can query the following relationships using SOQL:

• Query child-to-parent relationships, which are often many-to-one. Specify these relationships directly in the SELECT, FROM, or
WHERE  clauses using the dot (.) operator.

For example:

SELECT Id, Name, Account.Name
FROM Contact
WHERE Account.Industry = 'media'

This query returns the ID and name for only the contacts whose related account industry is media, and for each contact returned,
the account name.

• Query parent-to-child, which are almost always one-to-many. Specify these relationships using a subquery (enclosed in parentheses),
where the initial member of the FROM  clause in the subquery is related to the initial member of the outer query FROM  clause.
Note that for subqueries, you should specify the plural name of the object as that is the name of the relationship for each object.

For example:

SELECT Name,
(
SELECT LastName
FROM Contacts

)
FROM Account

The query returns the name for all the accounts, and for each account, the last name of each contact.

• Traverse the parent-to-child relationship as a foreign key in an aggregate query:

For example:

SELECT Name,
(
SELECT CreatedBy.Name
FROM Notes

)
FROM Account

This query returns the accounts in an organization, and for each account, the name of the account, the notes for those accounts
(which can be an empty result set if there were no notes on any accounts) with the name of the user who created each note (if the
result set is not empty).

• In a similar example, traverse the parent-to-child relationship in an aggregate query:

SELECT Amount, Id, Name,
(
SELECT Quantity, ListPrice,

PricebookEntry.UnitPrice, PricebookEntry.Name
FROM OpportunityLineItems

56

Using Relationship QueriesSalesforce Object Query Language (SOQL)



)
FROM Opportunity

Using the same query, you can get the values on Product2 by specifying the product family (which points to the field's data):

SELECT Amount, Id, Name, (SELECT Quantity, ListPrice,
PriceBookEntry.UnitPrice, PricebookEntry.Name,
PricebookEntry.product2.Family FROM OpportunityLineItems)
FROM Opportunity

• Any query (including subqueries) can include a WHERE clause, which applies to the object in the FROM  clause of the current query.
These clauses can filter on any object in the current scope (reachable from the root element of the query), via the parent relationships.

For example:

SELECT Name,
(
SELECT LastName
FROM Contacts
WHERE CreatedBy.Alias = 'x')

FROM Account WHERE Industry = 'media'

This query returns the name for all accounts whose industry is media, and for each account returned, returns the last name of every
contact whose created-by alias is 'x.'

Understanding Relationship Names, Custom Objects, and Custom Fields
Custom objects can participate in relationship queries. Salesforce ensures that your custom object names, custom field names, and the
relationship names that are associated with them remain unique, even if a standard object with the same name is available now or in
the future. Having unique relationship queries is important in cases where the query traverses relationships that use the object, field,
and relationship names.

This topic explains how relationship names for custom objects and custom fields are created and used.

When you create a new custom relationship in the Salesforce user interface, you are asked to specify the plural version of the object
name, which you use for relationship queries:

57

Understanding Relationship Names, Custom Objects, and
Custom Fields

Salesforce Object Query Language (SOQL)



Notice that the Child Relationship Name  (parent to child) is the plural form of the child object name, in this case Daughters.

Once the relationship is created, notice that it has an API Name, which is the name of the custom field you created, appended by
__c  (underscore-underscore-c):

When you refer to this field via the API, you must use this special form of the name. This prevents ambiguity in the case where Salesforce
can create a standard object with the same name as your custom field. The same process applies to custom objects—when they are
created, they have an API Name, the object named appended by __c, which must be used.

58

Understanding Relationship Names, Custom Objects, and
Custom Fields

Salesforce Object Query Language (SOQL)



When you use a relationship name in a query, you must use the relationship names without the __c. Instead, append an __r  (underscore
underscore r).

For example:

• When you use a child-to-parent relationship, you can use dot notation:

SELECT Id, FirstName__c, Mother_of_Child__r.FirstName__c
FROM Daughter__c
WHERE Mother_of_Child__r.LastName__c LIKE 'C%'

This query returns the ID and first name of daughter objects, and the first name of the daughter's mother if the mother's last name
begins with 'C.'

• Parent-to-child relationship queries do not use dot notation:

SELECT LastName__c,
(
SELECT LastName__c
FROM Daughters__r

)
FROM Mother__c

The example above returns the last name of all mothers, and for each mother returned, the last name of the mother's daughters.

Understanding Query Results
Query results are returned as nested objects. The primary or “driving” object of the main SELECT  statement in a SOQL query contains
query results of subqueries.

For example, you can construct a query using either parent-to-child or child-to-parent syntax:

• Child-to-parent:

SELECT Id, FirstName, LastName, AccountId, Account.Name
FROM Contact
WHERE Account.Name LIKE 'Acme%'

This query returns one query result (assuming there were not too many returned records), with a row for every contact that met the
WHERE  clause criteria.

• Parent-to-child:

SELECT Id, Name,
(
SELECT Id, FirstName, LastName
FROM Contacts

)
FROM Account
WHERE Name like 'Acme%'

This query returns a set of accounts, and within each account, a query result set of Contact fields containing the contact information
from the subquery.

Subquery results are like regular query results in that you might need to use queryMore()  to retrieve all the records if there are
many children. For example, if you issue a query on accounts that includes a subquery, your client application must handle results from
the subquery as well:

59

Understanding Query ResultsSalesforce Object Query Language (SOQL)



1. Perform the query on Account.

2. Iterate over the account QueryResult with queryMore().

3. For each account object, retrieve the contacts QueryResult.

4. Iterate over the child contacts, using queryMore()  on each contact's QueryResult.

The following sample illustrates how to process subquery results:

private void querySample() {
QueryResult qr = null;
try {
qr = connection.query("SELECT a.Id, a.Name, " +
"(SELECT c.Id, c.FirstName, " +
"c.LastName FROM a.Contacts c) FROM Account a");

boolean done = false;
if (qr.getSize() > 0) {
while (!done) {
for (int i = 0; i < qr.getRecords().length; i++) {
Account acct = (Account) qr.getRecords()[i];
String name = acct.getName();
System.out.println("Account " + (i + 1) + ": " + name);
printContacts(acct.getContacts());
}
if (qr.isDone()) {
done = true;

} else {
qr = connection.queryMore(qr.getQueryLocator());

}
}

} else {
System.out.println("No records found.");

}
System.out.println("\nQuery succesfully executed.");

} catch (ConnectionException ce) {
System.out.println("\nFailed to execute query successfully, error message " +
"was: \n" + ce.getMessage());

}
}

private void printContacts(QueryResult qr) throws ConnectionException {
boolean done = false;
if (qr.getSize() > 0) {
while (!done) {
for (int i = 0; i < qr.getRecords().length; i++) {
Contact contact = (Contact) qr.getRecords()[i];
String fName = contact.getFirstName();
String lName = contact.getLastName();
System.out.println("Child contact " + (i + 1) + ": " + lName
+ ", " + fName);

}
if (qr.isDone()) {
done = true;

} else {
qr = connection.queryMore(qr.getQueryLocator());

}

60

Understanding Query ResultsSalesforce Object Query Language (SOQL)



}
} else {
System.out.println("No child contacts found.");

}
}

Lookup Relationships and Outer Joins
Beginning with API version 13.0, relationship SOQL queries return records, even if the relevant foreign key field has a null value, as with
an outer join.

The change in behavior applies to the following types of relationship queries.

• In an ORDER BY  clause, if the foreign key value in a record is null, the record is returned in version 13.0 and later, but not returned
in versions before 13.0. For example:

SELECT Id, CaseNumber, Account.Id, Account.Name
FROM Case
ORDER BY Account.Name

Any case record for which AccountId  is empty is returned in version 13.0 and later.

The following example uses custom objects:

SELECT ID, Name, Parent__r.id, Parent__r.name
FROM Child__c
ORDER BY Parent__r.name

This query returns the Id  and Name  values of the Child object and the Id  and name of the Parent object referenced in each
Child, and orders the results by the parent name. In version 13.0 and later, records are returned even if Parent__r.id  or
Parent__r.name  are null. In earlier versions, such records are not returned by the query.

• In a WHERE  clause that uses OR, if the foreign key value in a record is null, the record is returned in version 13.0 and later, but not
returned in versions before 13.0. For example, if your organization has one contact with the value of its LastName  field equal to
foo  and the value of its AccountId  field equal to null, and another contact with a different last name and a parent account
named bar, the following query returns only the contact with the last name equal to bar:

SELECT Id FROM Contact WHERE LastName = 'foo' or Account.Name = 'bar'

The contact with no parent account has a last name that meets the criteria, so it is returned in version 13.0 and later.

• In a WHERE  clause that checks for a value in a parent field, if the parent does not exist, the record is returned in version 13.0 and
later but is not returned in versions before 13.0. For example:

SELECT Id
FROM Case
WHERE Contact.LastName = null

Case record Id  values are returned in version 13.0 and later, but are not returned in versions before 13.0.

• In a WHERE  clause that uses a Boolean field, the Boolean field never has a null value. Instead, null  is treated as false. Boolean
fields on outer-joined objects are treated as false when no records match the query.

Identifying Parent and Child Relationships
Identify parent-child relationships by viewing Entity Relationship Diagrams (ERD) or by examining the enterprise WSDL for your organization.

61

Lookup Relationships and Outer JoinsSalesforce Object Query Language (SOQL)



You can identify parent-child relationships by viewing the ERD diagrams in the Data Model section of the Salesforce Object Reference at
www.salesforce.com/us/developer/docs/object_reference/index.htm. However, not all parent-child
relationships are exposed in SOQL, so to be sure you can query on a parent-child relationship by issuing the appropriate describe call.
The results contain parent-child relationship information.

You can also examine the enterprise WSDL for your organization:

• To find the names of child relationships, look for entries that contain the plural form of a child object and end with
type="tns:QueryResult". For example, from Account:

<complexType name="Account">
<complexContent>
<extension base="ens:sObject">
<sequence>
...
<element name="Contacts" nillable="true" minOccurs="0"

type="tns:QueryResult"/>
...

</sequence>
</extension>

</complexContent>
</complexType>

In the example above, the child relationship name Contacts  is in the entry for its parent Account.

• For the parent of an object, look for a pair of entries, such as AccountId  and Account, where the ID field represents the parent
object referenced by the ID, and the other represents the contents of the record. The parent entry has a non-primitive type,
type="ens:Account".

<complexType name="Opportunity">
<complexContent>
<extension base="ens:sObject">
<sequence>
...
<element name="Account" nillable="true" minOccurs="0"

type="ens:Account"/>
<element name="AccountId" nillable="true" minOccurs="0"

type="tns:ID"/>
...

</sequence>
</extension>
</complexContent>

</complexType>

Note:  Not all relationships are exposed in the API. The most reliable method for identifying relationships is to execute a
describeSObjects()  call. You can use the AJAX Toolkit to quickly execute test calls.

• For custom objects, look for a pair of entries with the relationship suffix __r:

<complexType name="Mother__c">
<complexContent>
<extension base="ens:sObject">
<sequence>
...
<element name="Daughters__r" nillable="true" minOccurs="0"

type="tns:QueryResult"/>

62

Identifying Parent and Child RelationshipsSalesforce Object Query Language (SOQL)

https://developer.salesforce.com/docs/atlas.en-us.204.0.object_reference.meta/object_reference/
https://developer.salesforce.com/docs/atlas.en-us.204.0.ajax.meta/ajax/


<element name="FirstName__c" nillable="true" minOccurs="0"
type="xsd:string"/>

<element name="LastName__c" nillable="true" minOccurs="0"
type="xsd:string"/>

...
</sequence>
</extension>
</complexContent>
</complexType>

<complexType name="Daughter__c">
<complexContent>
<extension base="ens:sObject">
<sequence>
...
<element name="Mother_of_Child__c" nillable="true" minOccurs="0"

type="tns:ID"/>
<element name="Mother_of_Child__r" nillable="true" minOccurs="0"

type="xsd:string"/>
<element name="LastName__c" nillable="true" minOccurs="0"

type="ens:Mother__c"/>
...
</sequence>
</extension>
</complexContent>
</complexType>

Understanding Polymorphic Keys and Relationships
In a polymorphic relationship, the referenced object of the relationship can be one of several objects.

For example, the What  relationship field of an Event could be an Account, a Campaign, or an Opportunity. When making queries or
updating records with polymorphic relationships, you need to check the actual object type set for the relationship, and act accordingly.
You can access polymorphic relationships several ways.

• You can use the polymorphic key for the relationship.

• You can use a TYPEOF  clause in a query.

• You can use the Type qualifier on a polymorphic field.

You can also combine these techniques for complex queries. Each of these techniques are described below.

Note: TYPEOF  is currently available as a Developer Preview as part of the SOQL Polymorphism feature. For more information
on enabling TYPEOF  for your organization, contact Salesforce.

Using Polymorphic Keys
A polymorphic key is an ID that can refer to more than one type of object as a parent. For example, either a Contact or a Lead can be
the parent of a task. In other words, the WhoId  field of a task can contain the ID of either a Contact or a Lead. If an object can have
more than one type of object as a parent, the polymorphic key points to a Name object instead of a single object type.

Executing a describeSObjects()  call returns the Name object, whose field Type contains a list of the possible object types
that can parent the queried object. The namePointing  field in the DescribeSObjectResult indicates that the relationship points to

63

Understanding Polymorphic Keys and RelationshipsSalesforce Object Query Language (SOQL)



the Name object, needed because the relationship is polymorphic. For example, the value in the WhoId  field in aTask record can be a
Contact or Lead.

Note:  If your organization has the SOQL Polymorphism feature enabled, polymorphic relationship fields reference sObjects, and
not Names.

In order to traverse relationships where the object type of the parent is not known, you can use these fields to construct a query:

• owner: This field represents the object of a parent who owns the child object, regardless of the parent's object type. For example:

SELECT Id, Owner.Name
FROM Task
WHERE Owner.FirstName like 'B%'

This example query works for task records whose owners are either calendars or users.

• who: This field represents the object type of the parent associated with the child:

SELECT Id, Who.FirstName, Who.LastName
FROM Task
WHERE Owner.FirstName LIKE 'B%'

This example query works for task records whose owners can be either calendars or users, and whose “who” parent can be either
contacts or leads.

If you'd like to know the type of object returned in a query, use who.Type. For example:

SELECT Id, Who.Id, Who.Type
FROM Task

Using this example, you could also query all the tasks associated with Contacts:

SELECT Id, Who.Id, Who.Type
FROM Task
WHERE Who.Type='Contact'

• what: This field represents the object type of a parent that is associated with the child where the object represents something other
than a person (that is, not a contact, lead, or user):

SELECT Id, What.Name
FROM Event

This example query works for events whose parent can be an account or a solution, or any of another number of object types.

You can also use describeSObjects()  to obtain information about the parents and children of objects. For more information,
see describeSObjects()  and especially namePointing, which, if set to true, indicates the field points to a name.

Using TYPEOF
SOQL supports polymorphic relationships using the TYPEOF  expression in a SELECT  statement. TYPEOF  is available in API version
26.0 and later.

Use TYPEOF  in a SELECT statement to control which fields to query for each object type in a polymorphic relationship. The following
SELECT  statement returns a different set of fields depending on the object type associated with the What polymorphic relationship
field in an Event.

SELECT
TYPEOF What

64

Understanding Polymorphic Keys and RelationshipsSalesforce Object Query Language (SOQL)



WHEN Account THEN Phone, NumberOfEmployees
WHEN Opportunity THEN Amount, CloseDate
ELSE Name, Email

END
FROM Event

At run time this SELECT  statement checks the object type referenced by the What field in an Event. If the object type is Account, the
referenced Account’s Phone and NumberOfEmployee fields are returned. If the object type is Opportunity, the referenced Opportunity’s
Amount and CloseDate fields are returned. If the object type is any other type, the Name and Email fields are returned. Note that if an
ELSE  clause isn’t provided and the object type isn’t Account or Opportunity, then null  is returned for that Event.

Note the following considerations for TYPEOF.

• TYPEOF  is only allowed in the SELECT  clause of a query. You can filter on the object type of a polymorphic relationship using
the Type qualifier in a WHERE  clause, see Filtering on Polymorphic Relationship Fields for more details.

• TYPEOF  isn’t allowed in queries that don’t return objects, such as COUNT()  and aggregate queries.

• TYPEOF  can’t be used in SOQL queries that are the basis of Streaming API PushTopics.

• TYPEOF  can’t be used in SOQL used in Bulk API.

• TYPEOF  expressions can’t be nested. For example, you can’t use TYPEOF  inside the WHEN clause of another TYPEOF  expression.

• TYPEOF  isn’t allowed in the SELECT  clause of a semi-join query. You can use TYPEOF  in the SELECT  clause of an outer query
that contains semi-join queries. The following example is not valid:

SELECT Name FROM Account
WHERE CreatedById IN

(
SELECT

TYPEOF Owner
WHEN User THEN Id
WHEN Group THEN CreatedById

END
FROM CASE
)

The following semi-join clause is valid because TYPEOF  is only used in the outer SELECT clause:

SELECT
TYPEOF What

WHEN Account THEN Phone
ELSE Name

END
FROM Event
WHERE CreatedById IN

(
SELECT CreatedById
FROM Case
)

• GROUP BY, GROUP BY ROLLUP, GROUP BY CUBE, and HAVING aren’t allowed in queries that use TYPEOF.

65

Understanding Polymorphic Keys and RelationshipsSalesforce Object Query Language (SOQL)



Using the Type qualifier
You can use the Type qualifier on a field to determine the object type that’s referenced in a polymorphic relationship. Use the Type
qualifier in the WHERE  clause of a SELECT statement to conditionally control what’s returned from the query depending on the
referenced object type. The following SELECT  statement uses Type to filter the query based on the What field in Event.

SELECT Id
FROM Event
WHERE What.Type IN ('Account', 'Opportunity')

At run time this SELECT  statement returns the IDs for Events that reference Accounts or Opportunities in the What field. If an Event
referenced a Campaign in the What field, it wouldn’t be returned as part of this SELECT. Unlike the TYPEOF  expression, object types
are returned as strings from Type. You can apply any WHERE comparison operator to the object type strings, such as =  (Equals) or
LIKE.

Combining TYPEOF  and Type
You can combine TYPEOF  and Type in a SELECT  statement. The following SELECT  statement uses both TYPEOF  and Type to
filter the query and refine the set of returned fields based on the What field in Event.

SELECT Id,
TYPEOF What
WHEN Account THEN Phone
WHEN Opportunity THEN Amount

END
FROM Event
WHERE What.Type IN ('Account', 'Opportunity')

At run time this SELECT  statement always returns the ID for an Event, and then either Account.Phone, or Opportunity.Amount,
depending on the object type referenced by the Event’s What field. Note that no ELSE  clause has been provided. Since this statement
filters based on the What field in the WHERE  clause, only Events that reference either an Account or Opportunity are returned, so the
ELSE  clause is not needed. If an ELSE  clause was included in this case, it would be ignored at run time.

Understanding Relationship Query Limitations
When you design SOQL relationship queries, there are several limitations to consider.

• Relationship queries are not the same as SQL joins. You must have a relationship between objects to create a join in SOQL.

• No more than 35 child-to-parent relationships can be specified in a query. A custom object allows up to 25 relationships, so you can
reference all the child-to-parent relationships for a custom object in one query.

• No more than 20 parent-to-child relationships can be specified in a query.

• In each specified relationship, no more than five levels can be specified in a child-to-parent relationship. For example,
Contact.Account.Owner.FirstName  (three levels).

• In each specified relationship, only one level of parent-to-child relationship can be specified in a query. For example, if the FROM
clause specifies Account, the SELECT  clause can specify only the Contact or other objects at that level. It could not specify a child
object of Contact.

• You can query notes and attachments to get information about them, but you can’t filter on the body of the note or attachment.
You can’t filter against the content of textarea fields, blobs, or Scontrol components in any object. For example, this query is valid,
and it returns all account names and the owner ID for any notes associated with the account.

SELECT Account.Name, (SELECT Note.OwnerId FROM Account.Notes) FROM Account

66

Understanding Relationship Query LimitationsSalesforce Object Query Language (SOQL)



However, this query isn’t valid, because it attempts to evaluate information stored in the body of the note.

SELECT Account.Name, (SELECT Note.Body FROM Account.Notes WHERE Note.Body LIKE 'D%')
FROM Account

If you remove the WHERE  clause, the query is valid and returns the contents of the body of the note.

SELECT Account.Name, (SELECT Note.Body FROM Account.Notes) FROM Account

• Consider these limitations for external objects.

– A subquery that involves external objects can fetch up to 1,000 rows of data.

– Each SOQL query can have up to 4 joins across external objects and other types of objects.

Each join requires a separate round trip to the external system when executing the query. Expect longer response times for each
join in a query.

– External objects don’t support the ORDER BY  clause in relationship queries. This limit applies only when the external data is
accessed via the OData 2.0 adapter for Salesforce Connect.

– If the primary or “driving” object for a SELECT  statement is an external object, queryMore()  supports only that primary
object and doesn’t support subqueries.

Using Relationship Queries with History Objects
Custom objects and some standard objects have an associated history object that tracks changes to an object record. You can use SOQL
relationship queries to traverse a history object to its parent object.

For example, the following query returns every history row for Foo__c  and displays the name and custom fields of Foo:

SELECT OldValue, NewValue, Parent.Id, Parent.name, Parent.customfield__c
FROM foo__history

This example query returns every Foo object row together with the corresponding history rows in nested subqueries:

SELECT Name, customfield__c, (SELECT OldValue, NewValue FROM foo__history)
FROM foo__c

Using Relationship Queries with Data Category Selection Objects
Data categories are used to classify records. In SOQL, you can use the Article__DataCategorySelection or QuestionDataCategorySelection
objects. You can also build a relationship query with the DataCategorySelections relationship name in a FROM  clause.

Imagine an Offer  article type. The following query returns the ID of any categorization associated with an offer and the ID of the
categorized article.

SELECT Id,ParentId
FROM Offer__DataCategorySelection

The following example uses the DataCategorySelections relationship name to build a relationship query that returns the ID
of published offers and the ID of all the categorizations associated to these offers.

SELECT Id, Title
(
SELECT Id
FROM DataCategorySelections

67

Using Relationship Queries with History ObjectsSalesforce Object Query Language (SOQL)



)
FROM Offer__kav WHERE publishStatus='online';

Using Relationship Queries with the Partner WSDL
The partner WSDL doesn’t contain the detailed type information that’s available in the enterprise WSDL which you need for a relationship
SOQL query. You must first execute a describeSObjects()  call, and from the results, gather the information you need to create
your relationship query:

• The relationshipName  value for one-to-many relationships, for example, in an Account object, the relationship name for the
asset child is Assets.

• The reference fields available for the relevant object, for example, whoId, whatId, or ownerId on a Lead, Case, or custom
object.

For an example of using the partner WSDL with relationship queries, see the examples on developer.salesforce.com (requires login).

Change the Batch Size in Queries

You can change the batch size (the number of rows that are returned in the query result object) that’s returned in a query()  or
queryMore() call from the default 500 rows.

WSC clients can set the batch size by calling setQueryOptions()  on the connection object. C# client applications can change
this setting by specifying the batch size in the call QueryOptions portion of the SOAP header before invoking the query() call. The
maximum batch size is 2,000 records. However this setting is only a suggestion. There is no guarantee that the requested batch size will
be the actual batch size. This is done to maximize performance.

Note: The batch size will be no more than 200 if the SOQL statement selects two or more custom fields of type long text. This is
to prevent large SOAP messages from being returned.

The following sample Java (WSC) code demonstrates setting the batch size to two hundred and fifty (250) records.

public void queryOptionsSample() {
connection.setQueryOptions(250);

}

The following sample C# (.NET) code demonstrates setting the batch size to two hundred and fifty (250) records.

private void queryOptionsSample()
{

binding.QueryOptionsValue = new QueryOptions();

binding.QueryOptionsValue.batchSize = 250;
binding.QueryOptionsValue.batchSizeSpecified = true;

}

SOQL Limits on Objects

SOQL applies specific limits to objects and situations in search results. SOQL limits are defined for the ContentDocumentLink object,
ContentHubItem object, external objects, NewsFeed, KnowledgeArticleVersion, RecentlyViewed, TopicAssignment, UserRecordAccess,
UserProfileFeed, and Vote.

Some objects or situations have specific limits on SOQL.

68

Using Relationship Queries with the Partner WSDLSalesforce Object Query Language (SOQL)

https://developer.salesforce.com/page/RelationshipQuery


DescriptionObject

A SOQL query must filter on one of Id, ContentDocumentId, or LinkedEntityId.ContentDocumentLink

A SOQL query must filter on one of Id, ExternalId, or ContentHubRepositoryId.ContentHubItem

Custom metadata types support the following SOQL query syntax.

SELECT fieldList [...]
FROM objectType

Custom metadata types

[USING SCOPE filterScope]
[WHERE conditionExpression]
[ORDER BY field {ASC|DESC} [NULLS {FIRST|LAST}] ]

• You can use metadata relationship fields in the fieldList  and
conditionExpression.

• FROM  can include only 1 object.

• You can use the following operators.

– IN  and NOT IN

– =, >, >=, <, <=, and !=

– LIKE, including wild cards

– AND

• You can use ORDER BY  only with non-relationship fields.

• You can use ORDER BY, ASC, and DESC  with multiple (non-relationship) fields.

• You can only use ORDER BY  when the ordered field is a selected field.

• Metadata relationship fields support all standard relationship queries.

External objects • A subquery that involves external objects can fetch up to 1,000 rows of data.

• Each SOQL query can have up to 4 joins across external objects and other types of objects.

Each join requires a separate round trip to the external system when executing the query.
Expect longer response times for each join in a query.

• External objects don’t support the following aggregate functions and clauses.

– AVG()  function

– COUNT(fieldName)  function (however, COUNT()  is supported)

– HAVING  clause

– GROUP BY  clause

– MAX()  function

– MIN()  function

– SUM()  function

• External objects also don’t support the following.

– EXCLUDES  operator

– FOR VIEW  clause

– FOR REFERENCE  clause

69

SOQL Limits on ObjectsSalesforce Object Query Language (SOQL)



DescriptionObject

– INCLUDES  operator

– LIKE  operator

– toLabel()  function

– TYPEOF  clause

– WITH  clause

The following limits apply only to the OData 2.0 and 4.0 adapters for Salesforce Connect.

• External objects have the following limitations for the ORDER BY clause.

– NULLS FIRST  and NULLS LAST  are ignored.

– External objects don’t support the ORDER BY  clause in relationship queries.

• The COUNT()  aggregate function is supported only on external objects whose external
data sources have Request Row Counts enabled. Specifically, the response from
the external system must include the total row count of the result set.

The following limits apply only to custom adapters for Salesforce Connect.

• Location-based SOQL queries of external objects aren’t supported.

• If a SOQL query of an external object includes the following, the query fails.

– convertCurrency()  function

– UPDATE TRACKING  clause

– UPDATE VIEWSTAT  clause

– USING SCOPE  clause

• In an ORDER BY  clause, the following are ignored.

– NULLS FIRST  syntax

– NULLS LAST  syntax

The following limits apply only to external objects associated with a SharePoint 2010/2013
external data source using SecureAgent.

• In SOQL queries of external objects, IN  clauses with more than approximately 15 IDs
return the error “This operation is too complicated for Secure Agent.” The exact IN  clause
limit varies based on SharePoint ID length.

KnowledgeArticleVersion • Always filter on a single value of PublishStatus  unless the query filters on one or
more primary key IDs. To support security, only users with the “Manage Articles” permission
see articles whose PublishStatus  value is Draft.

• Archived article versions are stored in the articletype_kav object. To query archived article
versions, specify the article Id  and set IsLatestVersion='0'.

• Always filter on a single value of Language. However, in SOQL, you can filter on more
than one Language  if there is a filter on Id  or KnowledgeArticleId.

NewsFeed • No SOQL limit if logged-in user has “View All Data” permission. If not, specify a LIMIT clause
of 1,000 records or fewer.

70

SOQL Limits on ObjectsSalesforce Object Query Language (SOQL)



DescriptionObject

• SOQL ORDER BY on fields using relationships is not available. Use ORDER BY on fields on
the root object in the SOQL query.

The RecentlyViewed object is updated every time the logged-in user views or references a
record. It is also updated when records are retrieved using the FOR VIEW  or FOR

RecentlyViewed

REFERENCE  clause in a SOQL query. To ensure that the most recent data is available,
RecentlyViewed data is periodically truncated down to 200 records per object.

No SOQL limit if logged-in user has “View All Data” permission. If not, do one of the following:TopicAssignment

• Specify a LIMIT clause of 1,100 records or fewer.

• Filter on Id  or Entity  when using a WHERE  clause with "=".

UserRecordAccess • Always use the query formats specified in the SOAP API Developer's Guide.

• May include an ORDER BY  clause. You must ORDER BY HasAccess  if you SELECT
HasAccess, and ORDER BY MaxAccessLevel  if you SELECT
MaxAccessLevel.

• Maximum number of records that can be queried is 200.

UserProfileFeed • No SOQL limit if logged-in user has “View All Data” permission. If not, specify a LIMIT clause
of 1,000 records or fewer.

• SOQL ORDER BY on fields using relationships is not available. Use ORDER BY on fields on
the root object in the SOQL query.

Also, a SOQL query must include WITH UserId = {userId].

Vote • ParentId = [single ID]

• Parent.Type = [single type]

• Id = [single ID]

• Id IN = [list of IDs]

SOQL with Archived Data
You can use SOQL to query archived fields.

The allowed subset of SOQL commands lets you retrieve archived data for finer-grained processing. You can use the WHERE  clause to
filter the query by specifying comparison expressions for the FieldHistoryType, ParentId, and CreatedDate  fields, as
long as you specify them in that order. That is, if you filter by using ParentId  or CreatedDate, you must also filter by using the
preceding fields. The final comparison expression in the query can use any one of the comparison operators =, <, >, <=, or >=. Any
other comparison expression can use only the =  operator. You can’t use the !=  operator.

You can use the LIMIT  clause to limit the number of returned results. If you don’t use the LIMIT  clause, a maximum of 2,000 results
are returned. You can retrieve additional batches of results by using queryMore().

SELECT fieldList
FROM FieldHistoryArchive
[WHERE FieldHistoryType expression [AND ParentId expression[AND CreatedDate expression]]

71

SOQL with Archived DataSalesforce Object Query Language (SOQL)



]
[LIMIT rows]

Examples: Allowed Queries
Unfiltered

SELECT ParentId, FieldHistoryType, Field, Id, NewValue, OldValue FROM FieldHistoryArchive

Filtered on FieldHistoryType

SELECT ParentId, FieldHistoryType, Field, Id, NewValue, OldValue FROM FieldHistoryArchive
WHERE FieldHistoryType = ‘Account’

Filtered on FieldHistoryType and ParentId

SELECT ParentId, FieldHistoryType, Field, Id, NewValue, OldValue FROM FieldHistoryArchive
WHERE FieldHistoryType = ‘Account’ AND ParentId=’906F00000008unAIAQ’

Filtered on FieldHistoryType, ParentId, and CreatedDate

SELECT ParentId, FieldHistoryType, Field, Id, NewValue, OldValue FROM FieldHistoryArchive
WHERE FieldHistoryType = ‘Account” AND ParentId=’906F00000008unAIAQ’ AND CreatedDate
> LAST_MONTH

The following table describes the SOQL functions that are available for querying archived fields.

Note:  All number fields that are returned from a SOQL query of archived objects are in standard notation, not scientific notation
as in the number fields in the entity history of standard objects.

Table 1: SOQL Functions Available for Archived Fields

DetailsFunctionality

yesterday, last_week, and so onDATE LITERALS

LIMIT

Filtering only on FieldHistoryType, ParentId, and
CreatedDate

WHERE

Syndication Feed SOQL and Mapping Syntax

Syndication feed services use a SOQL query and mapping specification that allows applications to point to sets of objects and individual
objects and to traverse relationships between objects. Several options can be added as query string parameters to filter and control how
the data is presented. Syndication feeds can be defined for public sites.

For full information about the limitations on SOQL in query feed definitions, see the Salesforce online help for syndication feeds.

72

Syndication Feed SOQL and Mapping SyntaxSalesforce Object Query Language (SOQL)



Location-Based SOQL Queries

Location-based SOQL queries let you compare and query location values stored in Salesforce. You can calculate the distance between
two location values, such as between a warehouse and a store. Or you can calculate the distance between a location value and fixed
latitude-longitude coordinates, such as between a warehouse and 37.775°, -122.418°—also known as San Francisco.

The geolocation custom field type allows you to create a field to store location values. A geolocation field identifies a location by its
latitude and longitude. Standard addresses on Salesforce objects also include a geolocation field that, when populated, can be used in
similar ways—with a few restrictions. You can compare and query the locations of both types, for example, to find the 10 closest accounts.

For more information and considerations to keep in mind, see “Compound Fields” in the SOAP API Developer’s Guide.

Field Types That Support Location-Based SOQL Queries
SOQL supports using simple numeric values for latitude and longitude using the GEOLOCATION function. These values can come from
standard numeric fields, user input, calculations, and so on. They can also come from the individual components of a geolocation field,
which stores both latitude and longitude in a single logical field. If a geocoding service has populated the geolocation field of a standard
address, you can also use latitude and longitude values directly from an address.

SOQL queries made using the SOAP and REST APIs also support using geolocation fields, including address fields that have a geolocation
component, directly in SOQL statements. This often results in simpler SOQL statements. Compound fields can only be used in SOQL
queries made through the SOAP and REST APIs.

SELECT Clause
Retrieve records with locations saved in geolocation or address fields as individual latitude and longitude values by appending
“__latitude__s” or “__longitude__s” to the field name, instead of the usual “__c”. For example:

SELECT Name, Location__latitude__s, Location__longitude__s
FROM Warehouse__c

This query finds all the warehouses that are stored in the custom object Warehouse. The results include each warehouse’s latitude and
longitude values individually. To select the latitude and longitude components individually, use separate field components for
Location__c.

SOQL executed using the SOAP or REST APIs can SELECT the compound field, instead of the individual elements. Compound fields are
returned as structured data rather than primitive values. For example:

SELECT Name, Location__c
FROM Warehouse__c

This query retrieves the same data as the previous query, but the Location__c field is a compound geolocation field, and the results
combine the two primitive values. Here are sample results from a REST API request.

{
"totalSize" : 10,
"done" : true,
"records" : [ {
"attributes" : {
"type" : "Warehouse__c",
"url" : "/services/data/v30.0/sobjects/Warehouse__c/a06D00000017O4nIAE"

},
"Name" : "Ferry Building Depot",
"Location__c" : {

73

Location-Based SOQL QueriesSalesforce Object Query Language (SOQL)



"latitude" : 37.79302,
"longitude" : -122.394507

}
}, {
"attributes" : {
"type" : "Warehouse__c",
"url" : "/services/data/v30.0/sobjects/Warehouse__c/a06D00000017O4oIAE"

},
"Name" : "Aloha Warehouse",
"Location__c" : {
"latitude" : 37.786108,
"longitude" : -122.430152

}
},
...
]

}

WHERE Clause
Retrieve records with locations within or outside of a certain radius with distance conditions in the WHERE  clause of the query. To
construct an appropriate distance condition, use the following functions.

DISTANCE
Calculates the distance between two locations in miles or kilometers.

Usage: DISTANCE(mylocation1, mylocation2, 'unit')  and replace mylocation1  and mylocation2
with two location fields, or a location field and a value returned by the GEOLOCATION function. Replace unit  with mi (miles) or
km (kilometers).

GEOLOCATION
Returns a geolocation based on the provided latitude and longitude. Must be used with the DISTANCE function.

Usage: GEOLOCATION(latitude, longitude)  and replace latitude and longitude  with the corresponding
geolocation, numerical code values.

Compare two field values, or a field value with a fixed location. For example:

SELECT Name, Location__c
FROM Warehouse__c
WHERE DISTANCE(Location__c, GEOLOCATION(37.775,-122.418), 'mi') < 20

ORDER BY Clause
Sort records by distance using a distance condition in the ORDER BY  clause. For example:

SELECT Name, StreetAddress__c
FROM Warehouse__c
WHERE DISTANCE(Location__c, GEOLOCATION(37.775,-122.418), 'mi') < 20
ORDER BY DISTANCE(Location__c, GEOLOCATION(37.775,-122.418), 'mi')
LIMIT 10

This query finds up to 10 of the warehouses in the custom object Warehouse that are within 20 miles of the geolocation 37.775°, -122.418°,
which is San Francisco. The results include the name and address of each warehouse, but not its geocoordinates. The nearest warehouse
is first in the list. The farthest location is last.

74

Location-Based SOQL QueriesSalesforce Object Query Language (SOQL)

https://help.salesforce.com/articleView?id=GEOLOCATION&language=en_US


How SOQL Treats Null Location Values
Geolocation fields are compound fields that combine latitude and longitude values to describe a specific point on Earth. Null values are
valid only if both latitude and longitude are null.

A record that has an invalid geolocation field value is treated as though both values are null when used in SOQL WHERE DISTANCE()
and ORDER BY  clauses. A record that has a geolocation field in which either the latitude or longitude is null is treated as though the
field has not been set.

When a compound geolocation field is used in a SELECT clause, invalid geolocation values return null. For example:

SELECT Name, Location__c
FROM Warehouse__c
LIMIT 5

Values such as the ones in this table are returned from API calls.

Location__cName

nullFerry Building Depot

(37.786108,-122.430152)Aloha Warehouse

nullBig Tech Warehouse

nullS H Frank & Company

(37.77587,-122.399902)San Francisco Tech Mart

These results include three null geolocation values. It’s not possible to tell which values are genuinely null, and which are invalid data.

When the individual field components of that same geolocation field are used in a SELECT  clause, the saved values are returned as
before. Non-null values are returned as that value, and null values return as null. For example:

SELECT Name, Location__latitude__s, Location__longitude__s
FROM Warehouse__c
LIMIT 5

These values are sample query results.

Location__longitude__sLocation__latitude__sName

-122.394507nullFerry Building Depot

-122.43015237.786108Aloha Warehouse

nullnullBig Tech Warehouse

null37.763662S H Frank & Company

-122.39990237.77587San Francisco Tech Mart

In these results, only one geolocation field is genuinely null. The other two, with partial nulls, are invalid.

When you create formula fields that you plan to use for DISTANCE  calculations, select Treat blank fields as blanks in the Blank Field
Handling section. If you select Treat blank fields as zeros, distances are calculated from 0°, 0°—the point where the equator intersects

75

Location-Based SOQL QueriesSalesforce Object Query Language (SOQL)



the prime meridian—when your geolocation fields have null values. On record detail pages, null geolocation values in DISTANCE
formula fields that are set to Treat blank fields as zeros cause the formula fields to display as empty.

How SOQL Calculates and Compares Distances
The DISTANCE  function approximates the haversine, or “great circle,” distance calculation within 0.0002%. This formula assumes that
the Earth is a perfect sphere, when in fact it’s an ellipsoid: an irregular one. Errors from this assumption can be up to 0.55% crossing the
equator, but are usually below 0.3%, depending on latitude and direction of travel.

The DISTANCE  function is fine for calculating the 10 stores closest to a customer’s current location. But don’t fuel your plane for a
flight from San Francisco to Sydney based on it.

Another implication of this approximation is that geolocations and distances have no notion of “equal.” You can’t check locations or
distances for equality. You can only determine whether one location is farther away or closer than another location, or one distance is
greater or smaller than another. To verify that two locations are “the same,” treat their distance as a floating point number and compare
the difference to a tolerance value. For example, this WHERE  clause finds other records within 25 feet of testLocation.

WHERE ( DISTANCE(Location__c, testLocation) < 0.05 )

Although the errors are small for nearly identical distances, the errors can cause a location query to include or exclude expected locations.
If your application requires precise distance calculations and comparisons, we recommend that you do your own math.

Location-Based SOQL Query Considerations
Location-based queries are supported in SOQL in Apex and in the SOAP and REST APIs. Keep in mind these considerations.

• DISTANCE  and GEOLOCATION  are supported in WHERE  and ORDER BY  clauses in SOQL, but not in GROUP BY. DISTANCE
is supported in SELECT  clauses.

• DISTANCE  supports only the logical operators > and <, returning values within (<) or beyond (>) a specified radius.

• When using the GEOLOCATION  function in SOQL queries, the geolocation field must precede the latitude and longitude coordinates.
For example, DISTANCE(warehouse_location__c, GEOLOCATION(37.775,-122.418), 'km')  works but
DISTANCE(GEOLOCATION(37.775,-122.418), warehouse_location__c, 'km')  doesn’t work.

• Apex bind variables aren’t supported for the units parameter in DISTANCE  or GEOLOCATION  functions. This query doesn’t
work.

String units = 'mi';
List<Account> accountList =

[SELECT ID, Name, BillingLatitude, BillingLongitude
FROM Account
WHERE DISTANCE(My_Location_Field__c, GEOLOCATION(10,10), :units) < 10];

For more information, see “Compound Field Considerations and Limitations” in the SOAP API Developer’s Guide.

76

Location-Based SOQL QueriesSalesforce Object Query Language (SOQL)



CHAPTER 3 Salesforce Object Search Language (SOSL)

Use the Salesforce Object Search Language (SOSL) to construct text-based search queries against the
search index.

In this chapter ...

• Typographical
Conventions in This
Document

You can search text, email, and phone fields for multiple objects, including custom objects, that you
have access to in a single query in the following environments.

• SOAP or REST calls• SOSL Limits
• Apex statements• SOSL Limits on

External Objects • Visualforce controllers and getter methods
• SOSL Syntax • Schema Explorer of the Eclipse Toolkit
• Example Text

Searches Note:  If your org has relationship queries enabled, SOSL supports SOQL relationship queries.

• convertCurrency()

When to Use SOSL

Use SOSL when you don’t know which object or field the data resides in, and you want to:

• FIND {SearchQuery}

• FORMAT()

• IN SearchGroup

• LIMIT n • Retrieve data for a specific term that you know exists within a field. Because SOSL can tokenize
multiple terms within a field and build a search index from this, SOSL searches are faster and can
return more relevant results.

• OFFSET n

• ORDER BY Clause

• RETURNING FieldSpec • Retrieve multiple objects and fields efficiently where the objects might or might not be related to
one another.• toLabel(fields)

• Retrieve data for a particular division in an organization using the divisions feature.• Update an Article’s
Keyword Tracking
with SOSL

• Retrieve data that’s in Chinese, Japanese, Korean, or Thai. Morphological tokenization for CJKT terms
helps ensure accurate results.

• Update an Article’s
Viewstat with SOSL

Performance Considerations

If your searches are too general, they are slow and return too many results. Use the following clauses to
define efficient text searches.

• WHERE
conditionExpression

• WITH DATA
CATEGORY
DataCategorySpec • IN: Limits the types of fields to search, including email, name, or phone.

• WITH DivisionFilter • LIMIT: Specifies the maximum number of rows to return.
• WITH METADATA • OFFSET: Displays the search results on multiple pages.
• WITH NETWORK

NetworkIdSpec
• RETURNING: Limits the objects and fields to return.

• WITH DATA CATEGORY: Specifies the data categories to return.
• WITH PricebookId

• WITH DivisionFilter: Specifies the division field to return.• WITH SNIPPET
• WITH NETWORK: Specifies the community ID to return.

• WITH PricebookId: Specifies the price book ID to return.

77



Navigating This Document

• To see a list of available resources, see SOSL Syntax.

• To get started working with SOSL, see Example Text Searches.

78

Salesforce Object Search Language (SOSL)



Typographical Conventions in This Document

This SOSL reference uses specific typographical conventions.

Use the following typographical conventions:

DescriptionConvention

Courier font indicates items that you should type as shown. In a syntax statement,
Courier font also indicates items that you should type as shown, except for curly

FIND Name IN Account

braces, square brackets, ellipsis, and other typographical markers explained in this
table.

Italics represent a variable or placeholder. You supply the actual value.FIND fieldname IN objectname

The pipe character separates alternate elements. For example, in the clause UPDATE
TRACKING|VIEWSTAT[,...], the |  character indicates that you can use
either TRACKING  or VIEWSTAT  after UPDATE.

|

Square brackets indicate an optional element. For example, [LIMIT n]  means
that you can specify a LIMIT  clause. Don’t type square brackets as part of a SOSL

[LIMIT n]

command. Nested square brackets indicate elements that are optional and can only
be used if the parent optional element is present. For example, in the clause [ORDER
BY fieldname [ASC | DESC] [NULLS {FIRST | LAST}]] , ASC,
DESC, or the NULLS  clause cannot be used without the ORDER BY  clause.

Square brackets containing an ellipsis indicate that the preceding element can be
repeated up to the limit for the element. If a comma is also present, the repeated

[...]  and [,...]

elements must be separated by commas. If the element is a list of choices grouped
with curly braces, you can use items from the list in any order. For example, in the
clause [ [ [ UPDATE [TRACKING|VIEWSTAT][,...]], the [,...]
indicates that you can use TRACKING, VIEWSTAT, or both:

UPDATE TRACKING

UPDATE VIEWSTAT

UPDATE TRACKING, VIEWSTAT

SOSL Limits

The search engine limits the number of records analyzed at each stage of the search process. Sometimes, these limits cause a matching
record to be excluded from a user’s results.

This image illustrates how the search engine processes SOSL searches and limits results. Each color represents an object, and each
raindrop represents some records. The numbers correspond to this flow:

1. The search engine looks for matches to the search term across a maximum of 2,000 records (this limit starts with API version 28.0).

2. SOSL applies different limits for a given object or situation. If the search is for a single object, the full record limit is applied. If the
search is global across multiple objects, each object has individual limits that total 2,000 records.

3. Admins (users with the View All Data permission) see the full set of results returned.

79

Typographical Conventions in This DocumentSalesforce Object Search Language (SOSL)



4. For all other users, SOSL applies user permission filters. Individual users see only those records that they have access to. Results sets
and order vary by the user issuing the search and can change throughout the day as records are added or removed from the index.

Example: Joe Smith, a sales executive at Acme, Inc., wants to find the account record for Industrial Computing. He types Industrial
into the search bar. Because so many records match the search term Industrial, a limit is imposed on the results. Unfortunately for
Joe, the record he wanted is outside the limit. This concept is illustrated in the image as the single raindrop outside of the filter.

Because Joe used a global search, limits are applied to each object type to make up the 2,000 record limit. The illustration shows
five blue raindrops going into the filter, but only three make it to the next stage. If Joe limited his search to just one object, the
limit would apply to only that object, increasing the chance that the record he wanted would be returned.

Joe retries his search by typing Industrial Computing San Francisco. With a more specific search term, the search engine is able to
return better matches, even with the same limits applied. In this scenario, the record Joe’s looking for is one of the blue raindrops
that makes it from the top of the filter all the way through to Joe’s search results page.

To avoid search crowding and truncation:

Encourage users to use more specific search terms
Searches work best when users enter a unique search term. Acme Company San Francisco  returns more relevant results
than Acme.

Encourage users to narrow the search scope
When users are on the search results page, limit the search scope to the object type for the record desired. The search is rerun.
Potentially, users could see more results, because the full result set limit is applied against a single object.

Create list views
Create a list view for a specific set of contacts, documents, or other object records that you search for repeatedly. List views have no
limits to the number of records and have a set order. Sharing rules are also applied.

SOSL Limits on External Objects

SOSL applies specific limits to external objects in search results.

80

SOSL Limits on External ObjectsSalesforce Object Search Language (SOSL)



• To include an external object in SOSL and Salesforce searches, enable search on both the external object and the external data
source. However, syncing always overwrites the external object’s search status to match the search status of the external data source.

• Only text, text area, and long text area fields on external objects can be searched. If an external object has no searchable fields,
searches on that object return no records.

• External objects don’t support the following.

– INCLUDES  operator

– LIKE  operator

– EXCLUDES  operator

– toLabel()  function

• External objects also don’t support Salesforce Knowledge-specific clauses, including the following.

– UPDATE TRACKING  clause

– UPDATE VIEWSTAT  clause

– WITH DATA CATEGORY  clause

• External objects must be specified explicitly in a RETURNING  clause to be returned in search results. For example:

FIND {MyProspect} RETURNING MyExternalObject, MyOtherExternalObject

The following limits apply only to the OData 2.0 and 4.0 adapters for Salesforce Connect.

• The OData adapters for Salesforce Connect don’t support logical operators in a FIND  clause. We send the entire search query string
to the external system as a case-sensitive single phrase after removing all ASCII punctuation characters except hyphens (-). For
example, FIND {MyProspect OR “John Smith”} searches for the exact phrase “MyProspect OR John Smith”.

The following limits apply only to custom adapters for Salesforce Connect.

• The convertCurrency()  function isn’t supported in SOSL queries of external objects.

• WITH  clauses aren’t supported in SOSL queries of external objects.

SOSL Syntax

A SOSL query begins with the required FIND  clause. You can then add optional clauses to filter the query by object type, fields, data
categories, and more. You can also determine what is returned. For example, you can specify the order of the results and how many
rows to return.

After the required FIND  clause, you can add one or more optional clauses in the following order.

FIND {SearchQuery}
[ IN SearchGroup ]
[ RETURNING FieldSpec [[ toLabel(fields)] [convertCurrency(Amount)] [FORMAT()]] ]
[ WITH DivisionFilter ]
[ WITH DATA CATEGORY DataCategorySpec ]
[ WITH SNIPPET[(target_length=n)] ]
[ WITH NETWORK NetworkIdSpec ]
[ WITH PricebookId ]
[ WITH METADATA ]
[ LIMIT n ]

[ UPDATE [TRACKING], [VIEWSTAT] ]

81

SOSL SyntaxSalesforce Object Search Language (SOSL)



Note: OFFSET n  and WHERE conditionExpression  are included within RETURNING FieldSpec.

where:

DescriptionSyntax

Optional. If an org has multicurrency enabled, converts currency
fields to the user’s currency.

convertCurrency()

Required. Specifies the text (words or phrases) to search for. Enclose
the search query with curly braces.

If the SearchQuery  string is longer than 10,000 characters, no
result rows are returned. If SearchQuery  is longer than 4,000

FIND {SearchQuery}

characters, any logical operators are removed. For example, the
AND operator in a statement with a SearchQuery  that’s 4,001
characters will default to the OR  operator, which could return
more results than expected.

Optional. Use FORMAT  with the FIND  clause to apply localized
formatting to standard and custom number, date, time, and

FORMAT()

currency fields. The FORMAT  function supports aliasing. In
addition, aliasing is required when the query includes the same
field multiple times.

Optional. Scope of fields to search. One of the following values:IN SearchGroup

• ALL FIELDS

• NAME FIELDS

• EMAIL FIELDS

• PHONE FIELDS

• SIDEBAR FIELDS

If unspecified, the default is ALL FIELDS. You can specify the
list of objects to search in the RETURNING FieldSpec  clause.

Note:  This clause doesn’t apply to articles, documents,
feed comments, feed items, files, products, and solutions.
If these objects are specified in the RETURNING clause, the
search is not limited to specific fields, and all fields are
searched.

Optional. Specifies the maximum number of rows to return in the
text query, up to 2,000. If unspecified, the default is 2,000, the

LIMIT n

largest number of rows that can be returned. These limits apply to
API version 28.0 and later. Previous versions support a maximum
of 200 rows.

Optional. When expecting many records in a query’s results, you
can display the results in multiple pages by using the OFFSET

OFFSET n

clause in a SOSL query. For example, you can use OFFSET  to
display records 51–75 and then jump to displaying records

82

SOSL SyntaxSalesforce Object Search Language (SOSL)



DescriptionSyntax

301–350. Using OFFSET  is an efficient way to handle large results
sets.

Optional. Specifies the order in which search results are returned
using the ORDER BY  clause. You can also use this clause to
display empty records at the beginning or end of the results.

ORDER BY

Optional. Information to return in the search result. List of one or
more objects and, within each object, list of one or more fields,

RETURNING FieldSpec

with optional values to filter against. If unspecified, the search
results contain the IDs of all objects found.

Optional. Results from a query are returned translated into the
user’s language.

toLabel(fields)

Optional. If an org uses Salesforce Knowledge:[ UPDATE [TRACKING | VIEWSTAT][,...] ]  ]

• UPDATE TRACKING  tracks keywords used in Salesforce
Knowledge article search.

• Update an Article’s Viewstat with SOSL
updates an article’s view statistics.

• UPDATE TRACKING, VIEWSTAT  does both.

Optional. By default, a SOSL query on an object retrieves all rows
that are visible to the user. To limit the search, filter the search
result by specific field values.

WHERE conditionExpression

Optional. If an org uses Salesforce Knowledge articles or answers,
filters all search results based on one or more data categories.

WITH DATA CATEGORY DataCategorySpec

Optional. If an org uses divisions, filters all search results based on
values for the Division  field.

WITH DivisionFilter

Optional. Specifies if metadata is returned in the response. The
default setting is no, meaning no metadata is returned.

WITH METADATA

Optional. Filters search results by community ID.WITH NETWORK NetworkIdSpec

Optional. Filters product search results by a single price book ID.WITH PricebookId

Optional. If an org uses Salesforce Knowledge articles, displays
contextual snippets and highlights the search term for each article

WITH SNIPPET [(target_length=n)]

in the search results. By default, each snippet displays up to about
300 characters, which is usually about three lines of text in a
standard browser window. Add the optional target_length
parameter to specify an alternate target length, which can be from
100 and 500 characters.

Note: The SOSL statement character limit is tied to the SOQL statement character limit defined for your org. By default, SOQL and
SOSL queries cannot exceed 20,000 characters. For SOSL statements that exceed this maximum length, the API returns a
MALFORMED_SEARCH  exception code, and no result rows are returned.

83

SOSL SyntaxSalesforce Object Search Language (SOSL)



Example Text Searches

The following are examples of text searches that use SOSL.

Look for joe  anywhere in the system. Return the IDs of the records where joe  is found.

FIND {joe}

Look for the name Joe Smith  anywhere in the system, in a case-insensitive search. Return the IDs of the records where Joe Smith
is found.

FIND {Joe Smith}

Look for the name Joe Smith  in the name field of a lead, return the ID field of the records.

FIND {Joe Smith}
IN Name Fields
RETURNING lead

Look for the name Joe Smith  in the name field of a lead and return the name and phone number.

FIND {Joe Smith}
IN Name Fields
RETURNING lead(name, phone)

Look for the name Joe Smith  in the name field of a lead and return the name and phone number of any matching record that was
also created in the current fiscal quarter.

FIND {Joe Smith}
IN Name Fields
RETURNING lead (name, phone Where createddate = THIS_FISCAL_QUARTER)

Look for the name Joe Smith  or Joe Smythe  in the name field of a lead or contact and return the name and phone number. If
an opportunity is called Joe Smith  or Joe Smythe, the opportunity should not be returned.

FIND {"Joe Smith" OR "Joe Smythe"}
IN Name Fields
RETURNING lead(name, phone), contact(name, phone)

Wildcards:

FIND {Joe Sm*}
FIND {Joe Sm?th*}

Delimiting “and” and “or” as literals when used alone:

FIND {"and" or "or"}
FIND {"joe and mary"}
FIND {in}
FIND {returning}
FIND {find}

Escaping special characters & | ! ( ) { } [ ] ^ “ ~ * ? : \ '

FIND {right brace \}}
FIND {asterisk \*}
FIND {question \?}

84

Example Text SearchesSalesforce Object Search Language (SOSL)



FIND {single quote \'}
FIND {double quote \"}

Note: Apex requires that you surround SOQL and SOSL statements with square brackets to use them on the fly. You can use Apex
script variables and expressions when preceded by a colon (:).

convertCurrency()

Use convertCurrency()  in a SOSL query to convert currency fields to the user’s currency. This action requires that the organization
is multi-currency enabled.

Use this syntax for the RETURNING  clause:

convertCurrency(Amount)

For example,

FIND {test} RETURNING Opportunity(Name, convertCurrency(Amount))

If an org has enabled advanced currency management, dated exchange rates are used when converting currency fields on opportunities,
opportunity line items, and opportunity history. With advanced currency management, convertCurrency  uses the conversion
rate that corresponds to a given field (for example, CloseDate on opportunities). When advanced currency management
isn’t enabled, the most recent conversion date entered is used.

You can’t use the convertCurrency() function in a WHERE  clause. If you do, an error is returned. Use the following syntax to
convert a numeric value to the user’s currency from any active currency in your org.

WHERE Object_name Operator ISO_CODEvalue

For example:

FIND {test} IN ALL FIELDS RETURNING Opportunity(Name WHERE Amount>USD5000)

In this example, opportunity records are returned if the record’s currency Amount  value is greater than the equivalent of USD5000. For
example, an opportunity with an amount of USD5001  is returned, but not JPY7000.

Use an ISO code that your org has enabled and made active. If you don’t put in an ISO code, the numeric value is used instead of
comparative amounts. Using the previous example, opportunity records with JPY5001, EUR5001, and USD5001  would be returned.
If you use IN in a WHERE  clause, you can’t mix ISO code and non-ISO code values.

Note:  Ordering is always based on the converted currency value, just like in reports. Thus, convertCurrency()  cannot be
used with the ORDER BY Clause.

The currentCurrency()  function supports aliasing. In addition, aliasing is required when the query includes the same field
multiple times. For example:

FIND {Acme} RETURNING Account(AnnualRevenue, convertCurrency(AnnualRevenue) AliasCurrency)

FIND {SearchQuery}

Use the required FIND  clause of a SOSL query to specify the word or phrase to search for. A search query includes the literal word or
phrase and can also include wildcards and logical operators (AND, OR, and AND NOT).

A search query includes:

• The literal text (single word or a phrase) to search for

85

convertCurrency()Salesforce Object Search Language (SOSL)



• Optionally, Wildcards

• Optionally, logical Operators, including grouping parentheses

Searches are evaluated from left to right and use Unicode (UTF-8) encoding. Text searches are case-insensitive. For example, searches
for Customer, customer, and CUSTOMER  return the same results.

You can’t enter special types of text expressions (such as macros, functions, or regular expressions) that are evaluated at run time in the
FIND clause.

Note:  Surround the SearchQuery  with curly brackets to distinguish the search expression from other clauses in the text
search.

Search Terms
A SearchQuery  can contain:

• Single words, such as test  or hello

• Phrases that include words and spaces surrounded by double quotes, such as "john smith"

The search engine splits record information separated by spaces or punctuation into separate tokens.

The search engine returns accurate search results from searches in East Asian languages that don't include spaces between words using
morphological tokenization.

Example:  Consider the problem of indexing the term “Tokyo Prefecture” and a subsequent search for Kyoto  in Japanese.

SearchIndex

京都
Kyoto

東京都
Tokyo Prefecture

Morphological tokenization segments the term 東京都 (Tokyo Prefecture) into two tokens.

都
Prefecture

東京
Tokyo

This form of tokenization ensures that a search for 京都 (Kyoto) returns only results that include 京都 (Kyoto) and not 東京都
(Tokyo Prefecture).

Wildcards
You can specify the following wildcard characters to match text patterns in your search:

DescriptionWildcard

Asterisks match zero or more characters at the middle or end of your search term. For example, a search for john*
finds items that start with john, such as, john, johnson, or johnny. A search for mi* meyers finds items with mike
meyers or michael meyers.

*

If you are searching for a literal asterisk in a word or phrase, then escape the asterisk (precede it with the \ character).

86

FIND {SearchQuery}Salesforce Object Search Language (SOSL)



DescriptionWildcard

Question marks match only one character in the middle or end of your search term. For example, a search for jo?n
finds items with the term john or joan but not jon or johan. You can't use a ? in a lookup search.

?

When using wildcards, consider the following notes:

• The more focused your wildcard search, the faster the search results are returned, and the more likely the results will reflect your
intention. For example, to search for all occurrences of the word prospect  (or prospects, the plural form), it is more efficient
to specify prospect*  in the search string than to specify a less restrictive wildcard search (such as prosp*) that could return
extraneous matches (such as prosperity).

• Tailor your searches to find all variations of a word. For example, to find property  and properties, you would specify
propert*.

• Punctuation is indexed. To find *  or ?  inside a phrase, you must enclose your search string in quotation marks and you must escape
the special character. For example, "where are you\?"  finds the phrase where are you?. The escape character (\) is
required in order for this search to work correctly.

Operators
Combine multiple words with logic and grouping by using operators to form a more complex query. You can use the following special
operators to focus your text search. Operator support is case-insensitive.

DescriptionOperator

Use quotation marks around search terms to find an exact phrase match. This can be especially useful when
searching for text with punctuation. For example, "acme.com"  finds items that contain the exact text

" "

acme.com. A search for "monday meeting"  finds items that contain the exact phrase monday
meeting.

To include the words “and,” “or,” and “and not” in your search results, surround those words in double
quotes. Otherwise they’re interpreted as the corresponding operators.

Finds items that match all of the search terms. For example, john AND smith  finds items with both
the word john  and the word smith. In most cases if an operator isn't specified, AND  is the default

AND

operator. When searching articles, documents, and solutions, AND  must be specified because OR  is the
default operator.

Finds items with at least one of the search terms. For example, john OR smith  finds items with either
john  or smith, or both words.

OR

Finds items that do not contain the search term. For example, john AND NOT smith  finds items that
have the word john  but not the word smith.

AND NOT

Use parentheses around search terms in conjunction with logical operators to group search terms. For
example, you can search for:

( )

• ("Bob" and "Jones") OR ("Sally" and "Smith")—searches for either Bob Jones
or Sally Smith.

• ("Bob") and ("Jones" OR "Thomas") and Sally Smith—searches for documents
that contain Bob Jones and Sally Smith or Bob Thomas and Sally Smith.

87

FIND {SearchQuery}Salesforce Object Search Language (SOSL)



SearchQuery Character Limits
If the SearchQuery  string is longer than 10,000 characters, no result rows are returned. If SearchQuery  is longer than 4,000
characters, any logical operators are removed. For example, the AND operator in a statement with a SearchQuery  that’s 4,001
characters will default to the OR  operator, which could return more results than expected.

When you combine multiple operators in a search string, they're evaluated in this order:

1. Parentheses

2. AND and AND NOT (evaluated from right to left)

3. OR

Reserved Characters
The following characters are reserved:

? & | ! { } [ ] ( ) ^ ~ * : \ " ' + -

Reserved characters, if specified in a text search, must be escaped (preceded by the backslash \ character) in order to be properly
interpreted. An error occurs if you do not precede reserved characters with a backslash. This is true even if the SearchQuery  is
enclosed in double quotes.

For example, to search for the following text:

{1+1}:2

insert a backslash before each reserved character:

\{1\+1\}\:2

Example FIND Clauses

Example(s)Type of Search

FIND {MyProspect}

FIND {mylogin@mycompany.com}

Single term examples

FIND {FIND}

FIND {IN}

FIND {RETURNING}

FIND {LIMIT}

FIND {John Smith}Single phrase

FIND {MyProspect OR MyCompany}Term OR Term

FIND {MyProspect AND MyCompany}Term AND Term

FIND {MyProspect AND "John Smith"}Term AND Phrase

FIND {MyProspect OR "John Smith"}Term OR Phrase

88

FIND {SearchQuery}Salesforce Object Search Language (SOSL)



Example(s)Type of Search

FIND {MyProspect AND "John Smith" OR MyCompany}

FIND {MyProspect AND ("John Smith" OR MyCompany)}

Complex query using AND/OR

FIND {MyProspect AND NOT MyCompany}Complex query using AND NOT

FIND {My*}Wildcard search

FIND {Why not\?}Escape sequences

FIND {"John Smith}Invalid or incomplete phrase (will not
succeed)

FIND Clauses in Apex
The syntax of the FIND  clause in Apex differs from the syntax of the FIND clause in the SOAP API and REST API :

• In Apex, the value of the FIND clause is demarcated with single quotes. For example:

FIND 'map*' IN ALL FIELDS RETURNING Account (Id, Name), Contact, Opportunity, Lead

• In the Force.com API, the value of the FIND  clause is demarcated with braces. For example:

FIND {map*} IN ALL FIELDS RETURNING Account (Id, Name), Contact, Opportunity, Lead

The Force.com Apex Code Developer's Guide has more information about using SOSL and SOQL with Apex.

FORMAT()

Use FORMAT  with the FIND  clause to apply localized formatting to standard and custom number, date, time, and currency fields.

When the FORMAT  function is applied these fields reflect the appropriate format for the given user locale. The field format matches
what appears in the Salesforce Classic user interface. For example, the date December 28, 2015 can appear numerically as 2015-12-28,
28-12-2015, 28/12/2015, 12/28/2015, or 28.12.2015, depending on the org’s locale setting.

The FORMAT  function supports aliasing. In addition, aliasing is required when the query includes the same field multiple times. For
example:

FIND {Acme} RETURNING Account(Id, LastModifiedDate, FORMAT(LastModifiedDate) FormattedDate)

You can also nest it with aggregate or convertCurrency() functions.

FIND {Acme} RETURNING Account(AnnualRevenue, FORMAT(convertCurrency(AnnualRevenue))
convertedCurrency)

IN SearchGroup

Specify which types of text fields to search for on a SOSL query by using the IN SearchGroup optional clause. For example, you can search
for name, email, phone, sidebar, or all fields.

You can specify one of the following values (note that numeric fields are not searchable). If unspecified, the default behavior is to search
all text fields in searchable objects.

89

FORMAT()Salesforce Object Search Language (SOSL)



Note:  This clause doesn’t apply to articles, documents, feed comments, feed items, files, products, and solutions. If these objects
are specified in the RETURNING clause, the search is not limited to specific fields, and all fields are searched.

Valid SearchGroup Settings

DescriptionScope

Search all searchable fields. If the IN  clause is unspecified, then this is the default setting.ALL FIELDS

Search only email fields.EMAIL FIELDS

Search only name fields.

In addition to the standard Name field on most standard objects, these fields are also searched when
using IN NAME FIELDS  for these standard objects:

NAME FIELDS

• Account: Website, Site, NameLocal

• Asset: SerialNumber

• Case: SuppliedName, SuppliedCompany, Subject

• Contact: AssistantName, FirstNameLocal, LastNameLocal

• Event: Subject

• Lead: Company, CompanyLocal, FirstNameLocal, LastNameLocal

• Note: Title

• PermissionSet: Label

• Report: Description

• TagDefinition: NormName

• Task: Subject

• User: CommunityNickname

In custom objects, fields that are defined as “Name Field” are searched. In standard and custom
objects, name fields have the nameField  property set to true. (See the Field array of the
fields  parameter of the DescribeSObjectResult for more information.)

Search only phone number fields.PHONE FIELDS

Search for valid records as listed in the Sidebar drop-down list. Unlike search in the application, the
asterisk (*) wildcard is not appended to the end of a search string.

SIDEBAR FIELDS

While the IN  clause is optional, it is recommended that you specify the search scope unless you need to search all fields. For example,
if you’re searching only for an email address, you should specify IN EMAIL FIELDS  in order to design the most efficient search.

Example IN Clauses

Example(s)Search Type

FIND {MyProspect}No search group

FIND {MyProspect} IN ALL FIELDSALL FIELDS

90

IN SearchGroupSalesforce Object Search Language (SOSL)



Example(s)Search Type

FIND {mylogin@mycompany.com} IN EMAIL FIELDSEMAIL FIELDS

FIND {MyProspect} IN NAME FIELDSNAME FIELDS

FIND {MyProspect} IN PHONE FIELDSPHONE FIELDS

FIND {MyProspect} IN SIDEBAR FIELDSSIDEBAR FIELDS

FIND {MyProspect} IN AccountsInvalid search (will not succeed)

LIMIT n

LIMIT  is an optional clause that can be added to a SOSL query to specify the maximum number of rows that are returned in the text
query, up to 2,000 results. If unspecified, the default is the maximum 2,000 results.

The default 2,000 results is the largest number of rows that can be returned for API version 28.0 and later. Previous versions return up to
200 results.

You can set limits on individual objects or on an entire query.

When you set a limit on the entire query, results are evenly distributed among the objects returned. For example, let’s say you set an
overall query limit of 20 and don’t define any limits on individual objects. If 19 of the results are accounts and 35 are contacts, then only
10 accounts and 10 contacts are returned.

FIND {test} RETURNING Account(id), Contact LIMIT 20

Setting individual object limits allows you to prevent results from a single object using up the maximum query limit before other objects
are returned. For example, if you issue the following query, at most 20 account records can be returned, and the remaining number of
records can be contacts.

FIND {test} RETURNING Account(id LIMIT 20), Contact LIMIT 100

If you specify a limit of 0, no records are returned for that object.

OFFSET n

When expecting many records in a query’s results, you can display the results in multiple pages by using the OFFSET  clause in a SOSL
query. For example, you can use OFFSET  to display records 51 to 75 and then jump to displaying records 301 to 350. Using OFFSET
is an efficient way to handle large results sets.

Use the optional OFFSET  to specify the starting row offset into the result set returned by your query. Because the offset calculation is
done on the server and only the result subset is returned, using OFFSET is more efficient than retrieving the full result set and then
filtering the results locally. OFFSET  can be used only when querying a single object. OFFSET  must be the last clause specified in a
query. OFFSET  is available in API version 30.0 and later.

FIND {conditionExpression} RETURNING objectType(fieldList ORDER BY fieldOrderByList
LIMIT number_of_rows_to_return
OFFSET number_of_rows_to_skip)

As an example, if a query normally returned 50 rows, you could use OFFSET 10  in your query to skip the first 10 rows:

FIND {test} RETURNING Account(id LIMIT 10 OFFSET 10)

91

LIMIT nSalesforce Object Search Language (SOSL)



The result set for the preceding example would be a subset of the full result set, returning rows 11 through 20 of the full set.

Considerations When Using OFFSET
Consider these points when using OFFSET  in your queries:

• The maximum offset is 2,000 rows. Requesting an offset greater than 2,000 will result in a MALFORMED_SEARCH: SOSL
offset should be between 0 to 2000  error.

• We recommend using a LIMIT  clause in combination with OFFSET  if you need to retrieve subsequent subsets of the same result
set. For example, you could retrieve the first 100 rows of a query using the following:

FIND {test} RETURNING Account(Name, Id ORDER BY Name LIMIT 100)

You could then retrieve the next 100 rows, 101 through 200, using the following query:

FIND {test} RETURNING Account(Name, Id ORDER BY Name LIMIT 100 OFFSET 100)

• When using OFFSET, only the first batch of records will be returned for a given query. If you want to retrieve the next batch, you’ll
need to re-execute the query with a higher offset value.

• Consecutive SOSL requests for the same search term but with a different OFFSET aren’t guaranteed to return a different subset of
the same data if the data being searched has been updated since the previous request.

• The OFFSET  clause is allowed in SOSL used in SOAP API, REST API, and Apex.

ORDER BY Clause

You can specify the order in which search results are returned from a SOSL query using the ORDER BY  clause. You can also use the
clause to display empty records at the beginning or end of the results.

Use one or more ORDER BY  clauses in a SOSL statement.

Syntax
ORDER BY fieldname [ASC | DESC] [NULLS [first | last]]

DescriptionSyntax

Orders the results in ascending or descending order. The default is ascending. You can have more
than one ORDER BY  clause.

ASC  or DESC

Orders null records at the beginning (NULLS FIRST) or end (NULLS LAST) of the results. By default,
null values are sorted first.

NULLS [first | last]

Examples
This example orders the account names in ascending ID order.

FIND {MyName} RETURNING Account(Name, Id ORDER BY Id)

92

ORDER BY ClauseSalesforce Object Search Language (SOSL)



This example, which shows multiple ORDER BY  clauses, orders contacts in ascending order by name and by account description.

FIND {MyContactName} RETURNING Contact(Name, Id ORDER BY Name), Account(Description, Id
ORDER BY Description)

This search returns account records in descending alphabetical order by name, with accounts that have null names appearing last.

FIND {MyAccountName} IN NAME FIELDS RETURNING Account(Name, Id ORDER BY Name DESC NULLS
last)

This search returns custom objects that contain "San Francisco" in any field and have geolocation or address fields with locations that
are within 500 miles of the latitude and longitude coordinates 37 and 122, respectively. The results are sorted in descending order by
the locations’ distance from the coordinates.

FIND {San Francisco} RETURNING My_Custom_Object__c (Name, Id WHERE
DISTANCE(My_Location_Field__c,GEOLOCATION(37,122),'mi') < 500 ORDER BY
DISTANCE(My_Location_Field__c,GEOLOCATION(37,122),'mi') DESC)

RETURNING FieldSpec

RETURNING  is an optional clause that can be added to a SOSL query to specify the information to be returned in the text search result.

If unspecified, then the default behavior is to return the IDs of all objects that are searchable in advanced search as well as custom objects
(even if they don't have a custom tab), up to the maximum specified in the LIMIT n  clause or 2,000 (API version 28.0 and later),
whichever is smaller. In the results, objects are listed in the order specified in the clause. For information on searchable fields in advanced
and global search, see “Searchable Objects and Fields” in the Salesforce Help. API version 27.0 and earlier support a maximum of 200
results.

Note:  External objects, articles, documents, feed comments, feed items, files, products, and solutions must be specified explicitly
in a RETURNING clause to be returned in search results. For example:

FIND {MyProspect} RETURNING MySampleExternalObject, KnowledgeArticleVersion, Document,
FeedComment, FeedItem, ContentVersion, Product2, Solution

Use the RETURNING  clause to restrict the results data that is returned from the search() call. For information on IDs, see ID Field Type.

Syntax
In the following syntax statement, square brackets [] represent optional elements that can be omitted. A comma indicates that the
indicated segment can appear more than one time.

RETURNING ObjectTypeName
[(FieldList [WHERE conditionExpression] [ORDER BY Clause] [LIMIT n] [OFFSET n])]
[, ObjectTypeName [(FieldList [WHERE conditionExpression] [ORDER BY Clause] [LIMIT n]
[OFFSET n])]]

RETURNING can contain the following elements:

DescriptionName

Object to return. If specified, then the search() call returns the IDs of all found objects matching the
specified object. Must be a valid sObject type. You can specify multiple objects, separated by commas.

ObjectTypeName

If you specify more than one ObjectTypeName, each object must be distinct; you can’t repeat

93

RETURNING FieldSpecSalesforce Object Search Language (SOSL)



DescriptionName

an ObjectTypeName  within a single RETURNING  clause. Objects not specified in the
RETURNING  clause are not returned by the search() call.

Optional list of one or more fields to return for a given object, separated by commas. If you specify
one or more fields, the fields are returned for all found objects.

FieldList

Optional description of how search results for the given object should be filtered, based on individual
field values. If unspecified, the search retrieves all the rows in the object that are visible to the user.

Note that if you want to specify a WHERE  clause, you must include a FieldList  with at least
one specified field. For example, this is not legal syntax:

RETURNING Account (WHERE name like 'test')

WHERE
conditionExpression

But this is:

RETURNING Account (Name, Industry WHERE Name like 'test')

See conditionExpression for more information.

Optional description of how to order the returned result, including ascending and descending order,
and how nulls are ordered. You can supply more than one ORDER BY  clause.

Note that if you want to specify an ORDER BY  clause, you must include a FieldList  with at
least one specified field. For example, this is not legal syntax:

RETURNING Account (ORDER BY id)

ORDER BY Clause

But this is:

RETURNING Account (Name, Industry ORDER BY Name)

Optional clause that sets the maximum number of records returned for the given object. If unspecified,
all matching records are returned, up to the limit set for the query as a whole.

Note that if you want to specify a LIMIT  clause, you must include a FieldList  with at least
one specified field. For example, this is not legal syntax:

RETURNING Account (LIMIT 10)

LIMIT n

But this is:

RETURNING Account (Name, Industry LIMIT 10)

Optional clause used to specify the starting row offset into the result set returned by your query.
OFFSET  can be used only when querying a single object. OFFSET  must be the last clause specified
in a query.

Note that if you want to specify an OFFSET clause, you must include a FieldList with at least
one specified field. For example, this is not legal syntax:

RETURNING Account (OFFSET 25)

OFFSET n

But this is:

RETURNING Account (Name, Industry OFFSET 25)

94

RETURNING FieldSpecSalesforce Object Search Language (SOSL)



Note:  The RETURNING  clause affects whether external objects are searched. For other objects, the RETURNING  clause affects
what data is returned, not what data is searched. The IN  clause affects what data is searched.

Example RETURNING Clauses

Example(s)Search Type

FIND {MyProspect}No Field Spec

FIND {MyProspect} RETURNING ContactOne sObject, no fields

FIND {MyProspect} RETURNING Contact, LeadMultiple sObject objects, no fields

FIND {MyProspect} RETURNING Account(Name)One sObject, one or more fields

FIND {MyProspect} RETURNING Contact(FirstName, LastName)

FIND {MyProspect} RETURNING CustomObject_cCustom sObject

FIND {MyProspect} RETURNING CustomObject_c(CustomField_c)

FIND {MyProspect} RETURNING Contact(FirstName, LastName
LIMIT 10), Account(Name, Industry)

Multiple sObject objects, one or more
fields, limits

FIND {MyProspect} RETURNING Contact(FirstName, LastName),
Account, Lead(FirstName)

Multiple sObject objects, mixed
number of fields

FIND {MyProspect} RETURNING RecordTypeUnsearchable sObject objects

FIND {MyProspect} RETURNING Pricebook

FIND {MyProspect} RETURNING FooBarInvalid sObject objects

FIND {MyProspect} RETURNING Contact(fooBar)Invalid sObject field

FIND {MyProspect} RETURNING Contact(FirstName, LastName
LIMIT 10)

Single object limit

FIND {MyProspect} RETURNING Contact(FirstName, LastName
LIMIT 20), Account(Name, Industry LIMIT 10), Opportunity
LIMIT 50

Multiple object limits and a query limit

FIND {MyProspect} RETURNING Contact(FirstName, LastName
OFFSET 10)

Single object offset

Note: Apex requires that you surround SOQL and SOSL statements with square brackets to use them on the fly. You can use Apex
script variables and expressions when preceded by a colon (:).

toLabel(fields)

Use toLabel(fields) to translate SOSL query results into the user’s language.

95

toLabel(fields)Salesforce Object Search Language (SOSL)



A client application can have results from a query returned that are translated into the user’s language, using toLabel():

toLabel(object.field)

For example:

FIND {Joe} RETURNING Lead(company, toLabel(Recordtype.Name))

This query returns lead records with the record type name translated into the language for the user who issued the query.

Note:  You cannot filter on the translated name value from a record type. Always filter on the master value or the ID of the object
for record types.

You can use toLabel()  to filter records using a translated picklist value. For example:

FIND {test} RETURNING Lead(company, toLabel(Status) WHERE toLabel(Status) =
'le Draft' )

Lead records are returned where the picklist value for Status is 'le Draft.' The comparison is made against the value for the user’s language.
If no translation is available for the user’s language for the specified picklist, the comparison is made against the master values.

Note:  The toLabel()  method cannot be used with the ORDER BY Clause. Salesforce always uses the order defined in the
picklist, just like reports.

The toLabel  function supports aliasing. In addition, aliasing is required when the query includes the same field multiple times. For
example:

FIND {Joe} RETURNING Lead(company, toLabel(Recordtype.Name) AliasName)

Update an Article’s Keyword Tracking with SOSL

Track keywords that are used in Salesforce Knowledge article searches with the UPDATE TRACKING  optional clause on a SOSL query.
You can use the language attribute to search by locale.

The UPDATE TRACKING  clause is used to report on Salesforce Knowledge article searches and views. It allows developers to track
the keywords used in Salesforce Knowledge article searches. Also, the language attribute can be used to search by a specific language
(locale). However, only one language can be specified in a single query. Make a separate query for each language that you want. Use
the Java format, which uses the underscore (for example, fr_FR, jp_JP, and so on), to supply locales. Search the Web for “java locale
codes” to get a list of supported locales.

You can use this syntax to track a keyword used in Salesforce Knowledge article search:

FIND {Keyword}
RETURNING KnowledgeArticleVersion (Title WHERE PublishStatus="Online" and language="en_US")
UPDATE TRACKING

Update an Article’s Viewstat with SOSL

Determine how many hits a Salesforce Knowledge article has had by using the UPDATE VIEWSTAT  optional clause on a SOSL query.
You can use the language attribute to search by locale.

The optional UPDATE VIEWSTAT  clause is used to report on Salesforce Knowledge article searches and views. It allows developers
to update an article’s view statistics. Also, the language attribute can be used to search by a specific language (locale). However, only
one language can be specified in a single query. Make a separate query for each language that you want. Use the Java format, which

96

Update an Article’s Keyword Tracking with SOSLSalesforce Object Search Language (SOSL)



uses the underscore (for example, fr_FR, jp_JP, and so on), to supply locales. Search the Web for “java locale codes” to get a list of
supported locales.

You can use this syntax to increase the view count for every article you have access to online in US English:

FIND {Title}
RETURNING FAQ__kav (Title WHERE PublishStatus="Online" and
language="en_US" and
KnowledgeArticleVersion = 'ka230000000PCiy')
UPDATE VIEWSTAT

WHERE conditionExpression

By default, a SOSL query on an object retrieves all rows that are visible to the user. To limit the search, you can filter the search result by
specific field values.

conditionExpression
The conditionExpression of the WHERE  clause uses the following syntax:

fieldExpression [logicalOperator fieldExpression2 ... ]

You can add multiple field expressions to a condition expression by using logical operators.

The condition expressions in SOSL FIND statements appear in bold in these examples:

• FIND {test} RETURNING Account (id WHERE createddate = THIS_FISCAL_QUARTER)

• FIND {test} RETURNING Account (id WHERE cf__c includes('AAA'))

You can use parentheses to define the order in which fieldExpressions are evaluated. For example, the following expression is
true  if fieldExpression1 is true  and either fieldExpression2  or fieldExpression3  are true:

fieldExpression1 AND (fieldExpression2 OR fieldExpression3)

However, the following expression is true  if either fieldExpression3  is true  or both fieldExpression1  and
fieldExpression2  are true.

(fieldExpression1 AND fieldExpression2) OR fieldExpression3

Client applications must specify parentheses when nesting operators. However, multiple operators of the same type do not need to be
nested.

fieldExpression
A fieldExpression  uses the following syntax:

fieldName comparisonOperator value

where:

97

WHERE conditionExpressionSalesforce Object Search Language (SOSL)



DescriptionSyntax

The name of a field in the specified object. Use of single or double quotes around the name will result in an
error. You must have at least read-level permissions to the field. It can be any field except a long text area field,
encrypted data field, or base64-encoded field. It does not need to be a field in the fieldList.

fieldName

Case-insensitive operators that compare values.comparisonOperator

A value used to compare with the value in fieldName. You must supply a value whose data type matches
the field type of the specified field. You must supply a native value—other field names or calculations are not

value

permitted. If quotes are required (for example, they are not for dates and numbers), use single quotes. Double
quotes result in an error.

Comparison Operators
The following table lists the comparisonOperator values that are used in fieldExpression  syntax. Comparisons on strings are
case-insensitive.

DescriptionNameOperator

Expression is true if the value in the specified fieldName equals the specified value
in the expression. String comparisons using the equals operator are case-sensitive for
unique case-sensitive fields and case-insensitive for all other fields.

Equals=

Expression is true if the value in the specified fieldName does not equal the specified
value.

Not equals!=

Expression is true if the value in the specified fieldName  is less than the specified
value.

Less than<

Expression is true if the value in the specified fieldName  is less than, or equals, the
specified value.

Less or equal<=

Expression is true if the value in the specified fieldName  is greater than the specified
value.

Greater than>

Expression is true if the value in the specified fieldName  is greater than or equal to
the specified value.

Greater or
equal

>=

Expression is true if the value in the specified fieldName matches the characters of
the text string in the specified value. The LIKE  operator in SOQL and SOSL is similar

LikeLIKE

to the LIKE  operator in SQL; it provides a mechanism for matching partial text strings
and includes support for wildcards.

• The %  and _  wildcards are supported for the LIKE  operator.

• The %  wildcard matches zero or more characters.

• The _  wildcard matches exactly one character.

• The text string in the specified value  must be enclosed in single quotes.

• The LIKE  operator is supported for string fields only.

• The LIKE  operator performs a case-insensitive match, unlike the case-sensitive
matching in SQL.

98

WHERE conditionExpressionSalesforce Object Search Language (SOSL)



DescriptionNameOperator

• The LIKE  operator in SOQL and SOSL supports escaping of special characters %
or _.

• Don’t use the backslash character in a search except to escape a special character.

For example, the following query matches Appleton, Apple, and Appl, but not Bappl:

SELECT AccountId, FirstName, lastname
FROM Contact
WHERE lastname LIKE 'appl%'

If the value equals any one of the specified values in a WHERE  clause. For example:

SELECT Name FROM Account
WHERE BillingState IN ('California', 'New York')

ININ

The values for IN  must be in parentheses. String values must be surrounded by single
quotes.

IN  and NOT IN  can also be used for semi-joins and anti-joins when querying on ID
(primary key) or reference (foreign key) fields.

If the value does not equal any of the specified values in a WHERE  clause. For example:

SELECT Name FROM Account
WHERE BillingState NOT IN ('California', 'New York')

NOT INNOT IN

The values for NOT IN  must be in parentheses, and string values must be surrounded
by single quotes.

There is also a logical operator NOT, which is unrelated to this comparison operator.

Applies only to multi-select picklists.INCLUDES
EXCLUDES

Logical Operators
The following table lists the logical operator values that are used in fieldExpression  syntax:

DescriptionSyntaxOperator

true  if both fieldExpressionX  and fieldExpressionY  are true.fieldExpressionX AND
fieldExpressionY

AND

true  if either fieldExpressionX or fieldExpressionY  is true.

Relationship queries with foreign key values in an OR  clause behave differently
depending on the version of the API. In a WHERE  clause that uses OR, if the

fieldExpressionX OR
fieldExpressionY

OR

foreign key value in a record is null, the record is returned in version 13.0 and
later, but not returned in versions before 13.0.

SELECT Id FROM Contact WHERE LastName = 'foo' or
Account.Name = 'bar'

99

WHERE conditionExpressionSalesforce Object Search Language (SOSL)



DescriptionSyntaxOperator

The contact with no parent account has a last name that meets the criteria, so
it is returned in version 13.0 and later.

true  if fieldExpressionX  is false.

There is also a comparison operator NOT IN, which is different from this logical
operator.

not fieldExpressionXNOT

Quoted String Escape Sequences
You can use the following escape sequences with SOSL:

MeaningSequence

New line\n  or \N

Carriage return\r  or \R

Tab\t  or \T

Bell\b  or \B

Form feed\f  or \F

One double-quote character\"

One single-quote character\'

Backslash\\

Matches a single underscore character ( _ )LIKE expression only: \_

Matches a single percent sign character ( % )LIKE expression only:\%

If you use a backslash character in any other context, an error occurs.

Example WHERE Clauses

Example(s)

FIND {test}
RETURNING Account (id WHERE createddate = THIS_FISCAL_QUARTER)

FIND {test}
RETURNING Account (id WHERE cf__c includes('AAA'))

100

WHERE conditionExpressionSalesforce Object Search Language (SOSL)



Example(s)

FIND {test}
RETURNING Account (id), User(Field1,Field2 WHERE Field1 = 'test' order by id ASC,

Name DESC)

FIND {test} IN ALL FIELDS
RETURNING Contact(Salutation, FirstName, LastName, AccountId WHERE Name = 'test'),

User(FirstName, LastName),
Account(id WHERE BillingState IN ('California', 'New York'))

FIND {test}
RETURNING Account (id WHERE (Name = 'New Account')

or (Id = '001z00000008Vq7'
and Name = 'Account Insert Test')
or (NumberOfEmployees < 100 or NumberOfEmployees = null)
ORDER BY NumberOfEmployees)

To search for a Salesforce Knowledge article by ID:

FIND {tourism}
RETURNING KnowledgeArticleVersion (Id, Title WHERE id = 'ka0D0000000025eIAA')

To search for multiple Salesforce Knowledge articles by ID:

FIND {tourism}
RETURNING KnowledgeArticleVersion

(Id, Title WHERE id IN ('ka0D0000000025eIAA', 'ka0D000000002HCIAY'))

To search for "San Francisco" in all fields of all My_Custom_Object__c  objects that have a geolocation or address location within
500 miles of the latitude and longitude coordinates 37 and 122, respectively:

FIND {San Francisco}
RETURNING My_Custom_Object__c (Id

WHERE DISTANCE(My_Location_Field__c,GEOLOCATION(37,122),'mi') < 100)

WITH DATA CATEGORY DataCategorySpec

WITH DATA CATEGORY  is an optional clause that can be added to a SOSL query to filter all search results that are associated with
one or more data categories and are visible to users. This clause is used in searches of Salesforce Knowledge articles and questions.

The WITH DATA CATEGORY  clause can be used in API version 18.0 or later.

Syntax
The WITH DATA CATEGORY  syntax is:

WITH DATA CATEGORY DataCategorySpec [logicalOperator DataCategorySpec2 ... ]

101

WITH DATA CATEGORY DataCategorySpecSalesforce Object Search Language (SOSL)



Where DataCategorySpec  consists of a groupName, Operator, and category.

DescriptionName

The name of the data category group to filter. For information on category groups, see “Create and
Modify Category Groups” in the Salesforce Help.

groupName

Use one of the following operators:Operator

• AT—Queries the specified data category.

• ABOVE—Queries the specified data category and all of its parent categories.

• BELOW—Queries the specified data category and all of its subcategories.

• ABOVE_OR_BELOW—Queries the specified data category, all of its parent categories, and all
of its subcategories.

The name of the category to filter. To include multiple data categories, enclose them in parentheses,
separated by commas. For information on categories, see “Add Data Categories to Category Groups”
in the Salesforce Help.

category

You can add multiple data category specifiers by using the logical operator AND. Other operators, such as OR  and AND NOT, are not
supported.

A SOSL statement using the WITH DATA CATEGORY  clause must also include a RETURNING ObjectTypeName  clause,
with a WHERE  clause that filters on the PublishStatus field.

In the RETURNING  clause, specify one of the following for ObjectTypeName:

• To search a specific article type, use the article type name with the suffix __kav

• To search all article types, use KnowledgeArticleVersion

• To search questions, use Question

For information on article types, see “Knowledge Article Types” in the Salesforce Help.

The WHERE  clause must use one of the following publish statuses:

• WHERE PublishStatus='online'  for published articles

• WHERE PublishStatus='archived'  for archived articles

• WHERE PublishStatus='draft'  for draft articles

Examples

ExampleSearch Type

FIND {tourism} RETURNING KnowledgeArticleVersion
(Id, Title WHERE PublishStatus='online')
WITH DATA CATEGORY Location__c AT America__c

Search all published (online)Salesforce
Knowledge articles with a category from
one category group.

FIND {tourism} RETURNING FAQ__kav
(Id, Title WHERE PublishStatus='online')

Search online FAQ articles with categories
from two category groups.

102

WITH DATA CATEGORY DataCategorySpecSalesforce Object Search Language (SOSL)

https://developer.salesforce.com/docs/atlas.en-us.204.0.object_reference.meta/object_reference/sforce_api_objects_knowledgearticleversion.htm
https://developer.salesforce.com/docs/atlas.en-us.204.0.object_reference.meta/object_reference/sforce_api_objects_question.htm


ExampleSearch Type

WITH DATA CATEGORY Geography__c ABOVE France__c
AND Product__c AT mobile_phones__c

FIND {tourism} RETURNING FAQ__kav
(Id, Title WHERE PublishStatus='archived')
WITH DATA CATEGORY Geography__c AT Iceland__c

Search archived FAQ articles from one
category group.

FIND {tourism} RETURNING KnowledgeArticleVersion
(Id, Title WHERE PublishStatus='draft')
WITH DATA CATEGORY Geography__c BELOW Europe__c

Search all draft Salesforce Knowledge
articles from one category group.

For information on the WITH DATA CATEGORY  clause, see the WITH DATA CATEGORY filteringExpression.

Tip:  You can also search for articles by ID, without using the WITH DATA CATEGORY  clause. For more information, see
Example WHERE Clauses.

WITH DivisionFilter

WITH DivisionFilter  is an optional clause that can be added to a SOSL query to filter all search results based on the division
field. It pre-filters all records based on the division before applying other filters. You can also specify a division by its name rather than
by its ID.

For example:

FIND {test} RETURNING Account (id where name like '%test%'),
Contact (id where name like '%test%')

WITH DIVISION = 'Global'

Note:

• Users can perform searches based on division regardless of whether they have the “Affected by Divisions” permission enabled.

• All searches within a specific division also include the global division. For example, if you search within a division called Western
Division, your results will include records found in both the Western Division and the global division.

WITH METADATA

Specifies if metadata is returned in the response. Optional clause.

No metadata is returned by default. To include metadata in the response, use the LABELS  value, which returns the display label for
the fields returned in search results. For example:

FIND {Acme} RETURNING Account(Id, Name) WITH METADATA='LABELS'

103

WITH DivisionFilterSalesforce Object Search Language (SOSL)



WITH NETWORK NetworkIdSpec

You can search for community users and feeds by using the WITH NETWORK  optional clause on a SOSL query. When you’re filtering
search results by community, each community is represented by a community ID (NetworkId).

You can use the following syntax.

• WITH NETWORK IN (’NetworkId1', ’NetworkId2', ...)  supports filtering by one or more communities.

• WITH NETWORK = ’NetworkId'  supports filtering by a single community only.

For objects other than users and feeds, search results include matches across all communities and internal company data, even if you
use network filtering in your query.

• You can run searches against multiple objects in the same community.

• You can’t run scoped and unscoped searches in the same query. For example, you can’t search users from a community along with
accounts from the entire organization.

To filter search results for groups or topics by community, use the WHERE  clause with a NetworkId value. If you want to search for an
internal community, use an all zero value for NetworkId.

Example WITH NETWORK NetworkIdSpec Clauses
To search multiple communities for users and feed items containing the string “test” and to sort feed items from the newest to the oldest:

FIND {test} RETURNING User (id),
FeedItem (id, ParentId WHERE CreatedDate =

THIS_YEAR Order by CreatedDate DESC)
WITH NETWORK IN ('NetworkId1', 'NetworkId2', 'NetworkId3')

To search the NetworkId community for users and feed items containing the string “test” and to sort feed items from the newest to the
oldest:

FIND {test} RETURNING User (id),
FeedItem (id, ParentId WHERE CreatedDate =

THIS_YEAR Order by CreatedDate DESC)
WITH NETWORK = 'NetworkId'

To search in an internal community for users and feed items containing the string “test” and to sort feed items from newest to oldest:

FIND {test} RETURNING User (id),
FeedItem (id, ParentId WHERE CreatedDate =

THIS_YEAR Order by CreatedDate DESC)
WITH NETWORK = '00000000000000'

WITH PricebookId

Filters product search results by a single price book ID.

Only applicable for the Product2 object. The price book ID must be associated with the product that you’re searching for. For example:

Find {laptop} RETURNING Product2 WITH PricebookId = '01sxx0000002MffAAE'

104

WITH NETWORK NetworkIdSpecSalesforce Object Search Language (SOSL)



WITH SNIPPET

WITH SNIPPET  is an optional clause that can be added to a SOSL query for article, case, feed, and idea searches to provide users
with more context for the record in the search results. Snippets make it easier for users to identify the content that they’re looking for
in the search results when the search term isn’t included in the summary field.

Search highlights and snippets are generated from the following field types.

• Email

• Text

• Text Area

• Text Area (Long)

• Text Area (Rich)

Search highlights and snippets are not generated from the following field types.

• Checkbox

• Currency

• Date

• Date/Time

• File

• Formula

• Lookup Relationship

• Number

• Percent

• Phone

• Picklist

• Picklist (Multi-Select)

• URL

Example:  The following SOSL statement returns snippets for articles that match the search term San Francisco.

FIND {San Francisco} IN ALL FIELDS RETURNING KnowledgeArticleVersion(id, title WHERE
PublishStatus = 'Online' AND Language = 'en_US') WITH

SNIPPET (target_length=120)

The search term is highlighted with <mark>  tags within the context of the snippet results. Stemmed forms of the term and any
synonyms defined are also highlighted.

Example:

[ {
"attributes" : {
"type" : "KnowledgeArticleVersion",
"url" : "/services/data/v32.0/sobjects/KnowledgeArticleVersion/kaKD00000000001MAA"

},
"Id" : "kaKD00000000001MAA"
"Title" : "San Francisco"
"Summary" : "City and County of San Francisco"

105

WITH SNIPPETSalesforce Object Search Language (SOSL)



"snippet.text" : "<mark>San</mark> <mark>Francisco</mark>, officially the City and
County of <mark>San</mark> <mark>Francisco</mark> is the... City and County of
<mark>San</mark> <mark>Fran</mark>"
"snippet.whole.Title" : "<mark>San</mark> <mark>Francisco</mark>"

}, {
"attributes" : {
"type" : "KnowledgeArticleVersion",
"url" : "/services/data/v32.0/sobjects/KnowledgeArticleVersion/kaBD0000000007DMAQ"

},
"Id" : "kaBD0000000007DMAQ",
"Title" : "San Francisco Bay Area",
"Summary" : "Nine county metropolitan area",
"snippet.text" : "The <mark>SF</mark> Bay Area, commonly known as the Bay Area, is

a populated region that"
"snippet.whole.Title" : "<mark>San</mark> <mark>Francisco</mark> Bay Area"

}, {
"attributes" : {
"type" : "KnowledgeArticleVersion",
"url" : "/services/data/v32.0/sobjects/KnowledgeArticleVersion/ka3D0000000042OIAQ"

},
"Id" : "ka3D0000000042OIAQ",
"Title" : "California",
"Summary" : "State of California",
"snippet.text" : "(Greater Los Angeles area and <mark>San</mark>

<mark>Francisco</mark> Bay Area, respectively), and eight of the nation’s 50 most"
} ]

Note:  In this example, “SF” (as a synonym defined for “San Francisco”) and “San Fran” (as a stemmed form of “San Francisco”)
are also highlighted in the results as matching search terms.

Usage
For SOSL statements using the WITH SNIPPET  clause, we recommend using a RETURNING ObjectTypeName  clause, with
a WHERE  clause that filters on the PublishStatus  field.

In the RETURNING  clause, specify one of the following for ObjectTypeName:

• To search a specific article type, use the article type name with the suffix __kav.

• To search all article types, use KnowledgeArticleVersion.

• To search case, case comment, feed, feed comment, idea, and idea comment types, use Case, CaseComment, FeedItem,
FeedComment, Idea, and IdeaComment. For example:

FIND {San Francisco} IN ALL FIELDS RETURNING FeedItem, FeedComment WITH SNIPPET
(target_length=120)

Other objects that are included in searches that contain WITH SNIPPET  don’t return snippets.

Snippets aren’t displayed for search terms that contain a wildcard, when the search doesn’t return any articles, or if the user doesn’t have
access to the field that contains the snippet. Even if you add the WITH SNIPPET  clause, searches that don’t return snippets don’t
return snippets.

Snippets are only displayed when 20 or fewer results are returned on a page.

106

WITH SNIPPETSalesforce Object Search Language (SOSL)

https://developer.salesforce.com/docs/atlas.en-us.204.0.object_reference.meta/object_reference/sforce_api_objects_knowledgearticleversion.htm


Tip:  Use the LIMIT  or OFFSET  clause to return only 20 results at a time.

Escaped HTML Tags
When matching search terms within HTML tags are returned in a snippet, the HTML tags are escaped and the matched search terms
are highlighted in the results.

Example:  A search for salesforce  returns an article with the text, “For more information, visit <a
href='http://salesforce.com'>salesforce.com</a>”. The original hyperlink tags from the article are escaped (encoded) and “salesforce”
is highlighted in the snippet result.

For more information, visit &lt;a
href='http://salesforce.com'&gt;salesforce.com&lt;/a&gt;

Target Snippet Length
By default, each snippet displays up to approximately 300 characters, which is usually three lines of text in a standard browser window
display.

Snippets consist of one or more fragments of text that contain the search term up to a target length, within a statistically insignificant
degree of variance. If the returned snippet includes multiple text fragments (for example, for matches within multiple fields), the target
length is the maximum total length of all the returned fragments.

To specify an alternate target length, add the optional target_length  parameter to the WITH SNIPPET  clause. You can specify
a target length from 50 and 1,000 characters. When the target_length  is set to an invalid number, such as 0  or a negative number,
the length defaults to 300.

Example:  The target_length  parameter is useful for displaying a snippet of approximately three lines of text in a standard
mobile interface.

FIND {San Francisco} IN ALL FIELDS RETURNING KnowledgeArticleVersion(id, title WHERE
PublishStatus = 'Online' AND Language = 'en_US') WITH

SNIPPET(target_length=120)

Supported APIs
The WITH SNIPPET clause can be used in API version 32.0 or later. The WITH SNIPPET  clause in SOSL is supported in SOAP API,
REST API, and Apex.

107

WITH SNIPPETSalesforce Object Search Language (SOSL)



INDEX

A
Aggregate functions

field types, support 47
SOQL SELECT 44

Alias 33
Anti-join 14
Apex and SOSL 89

B
Batch size manipulation for query() 68
Boolean fields

filtering 11

C
Categories filtering (WITH DATA CATEGORY) 28
Characters reserved in SOQL SELECT 6
Characters reserved in SOSL FIND 88
Child relationships

identifying 61
Comparison operators 13
Condition expression (WHERE clause) 9
Conventions

SOQL 1, 5, 7
SOSL 79

COUNT() 46
CUBE 37
Currency fields, querying with SOSL 85

D
Data categories

filtering 30
Data categories, filtering in SOSL 101
Data Category Selection 29
Date formats 19
Date functions

SOQL SELECT 49
time zones 51

Date literals 19
Divisions, filtering in SOSL 103
Duplicates 39

E
Escape sequences for SOQL 5
Example SELECT clauses 52

F
Feed service API URL Syntax 72
Field expression 12
Field types 47
Filtering on polymorphic relationship fields 12
FIND and Apex 89
FIND clause, SOSL 85
FOR REFERENCE

SOQL SELECT 43
FOR VIEW

SOQL SELECT 42–43
Foreign key null value and relationship query 61
FORMAT

SOQL SELECT 42

G
GROUP BY

alias 33
considerations 32
CUBE 37
GROUPING() 36
ROLLUP 33
SOQL SELECT 31
using 32

GROUPING() 36

H
HAVING

considerations 39
SOQL SELECT 39
using 39

I
IN clause, SOSL 89

L
LIMIT 25
LIMIT clause, SOSL 91
Limits

SOQL 68
Logical operators 18

M
Multicurrency organizations, querying currency fields with SOSL

85

108



N
Null value in SOQL 10
Null values in foreign key with relationship query 61

O
OFFSET 25, 91
Operators

comparison 13
logical 18

ORDER BY
SOQL SELECT 23

ORDER BY clause
SOSL FIND 92

P
Parent relationships

identifying 61
Polymorphic relationships

Filtering in WHERE clause 12
TYPEOF 40

Q
query() call

batch size manipulation 68
SOQL overview 3

R
Relationship names

for custom objects and custom fields 57
Relationship queries

and foreign key with null values 61
data categories 67
history object 67
identifying parent and child relationships 61
limitations 66
overview 56
partner WSDL 68
polymorphic keys 63
polymorphic relationships 63
understanding results 59

Reserved characters in SOQL SELECT 6
Reserved characters in SOSL FIND 88
RETURNING

OFFSET 91
RETURNING clause, SOSL 93
ROLLUP 33

S
search() call

SOSL overview 77
SearchQuery character limit 88
SELECT

aggregate functions 44
condition expression (WHERE clause 9
COUNT() 46
date formats 9
date formats and date literals 19
example clauses 52
field expression 12
FOR REFERENCE 43
FOR UPDATE 43
FOR VIEW 42
FORMAT 42
GROUP BY 31–32
GROUP BY CUBE 37
GROUP BY ROLLUP 33
HAVING 39
LIMIT 25
OFFSET 25
ORDER BY 23
SOQL 7
toLabel() 10
TYPEOF 40
UPDATE 27
USING SCOPE 23
WITH 28
WITH DATA CATEGORY 28–29

Semi-join 14
SOQ-R, see relationship queries 54
SOQL

alias 33
date functions 49
duplicates 39
Escape sequences for quoted string 5
geolocation queries 73
GROUPING() 36
limits 68
null value 10
overview 3
Quoted string escape sequences 5
reserved characters 6
Supported by Field Audit Trail 71
time zones 51
typographical conventions 1, 5, 7

SOQL relationship queries 54

109

Index



SOSL
Apex syntax 89
examples 84
filter by communities 104
FIND clause 85
FORMAT call 89, 103–104
IN clause 89
LIMIT clause 91
ORDER BY clause 92
overview 77
querying currency fields 85
RETURNING clause 93
syntax 81
toLabel() call 95
typographical conventions 79
WHERE clause 97
WITH clause 103
WITH DATA CATEGORY clause 101
WITH NETWORK = ’NetworkId’ 104
WITH NETWORK IN (’NetworkId1’, ...) 104
WITH SNIPPET clause 105

SOSL character limit 88

T
Time zones 51
TYPEOF 40, 63
Typographical conventions

SOQL 1, 5, 7
SOSL 79

U
UPDATE TRACKING 27, 96
UPDATE VIEWSTAT 27, 96
URL syntax for syndication feed service API 72
USING SCOPE

SOQL SELECT 23

W
WHERE clause

filtering on Boolean fields 11
Filtering on polymorphic relationship fields 12

WHERE clause, SOSL 97
WITH 28
WITH clause, SOSL 103
WITH DATA CATEGORY 28
WITH DATA CATEGORY clause, SOSL 101
WITH SNIPPET clause, SOSL 105

110

Index


	Introduction to SOQL and SOSL
	Salesforce Object Query Language (SOQL)
	Typographical Conventions in This Document
	Quoted String Escape Sequences
	Reserved Characters
	Alias Notation
	SOQL SELECT Syntax
	Condition Expression Syntax (WHERE Clause)
	Using null in SOQL Queries
	Translating Results
	Filtering on Boolean Fields
	Querying Multi-Select Picklists
	Filtering on Polymorphic Relationship Fields

	fieldExpression Syntax
	Comparison Operators
	Logical Operators
	Date Formats and Date Literals

	USING SCOPE
	ORDER BY
	LIMIT
	OFFSET
	Update an Article’s Keyword Tracking with SOQL
	Update an Article Viewstat with SOQL
	WITH filteringExpression
	WITH DATA CATEGORY filteringExpression
	dataCategorySelection
	Filtering Selectors
	Example WITH DATA CATEGORY Clauses


	GROUP BY
	Considerations When Using GROUP BY
	Using Aliases with GROUP BY
	GROUP BY ROLLUP
	Using GROUPING(fieldName) to Identify Subtotals
	GROUP BY CUBE

	HAVING
	Considerations When Using HAVING

	TYPEOF
	FORMAT ()
	FOR VIEW
	FOR REFERENCE
	FOR UPDATE
	Aggregate Functions
	COUNT() and COUNT(fieldName)
	Support for Field Types in Aggregate Functions

	Date Functions
	Converting Time Zones in Date Functions

	Querying Currency Fields in Multi-currency Orgs
	Example SELECT Clauses

	Relationship Queries
	Understanding Relationship Names
	Using Relationship Queries
	Understanding Relationship Names, Custom Objects, and Custom Fields
	Understanding Query Results
	Lookup Relationships and Outer Joins
	Identifying Parent and Child Relationships
	Understanding Polymorphic Keys and Relationships
	Understanding Relationship Query Limitations
	Using Relationship Queries with History Objects
	Using Relationship Queries with Data Category Selection Objects
	Using Relationship Queries with the Partner WSDL

	Change the Batch Size in Queries
	SOQL Limits on Objects
	SOQL with Archived Data

	Syndication Feed SOQL and Mapping Syntax
	Location-Based SOQL Queries

	Salesforce Object Search Language (SOSL)
	Typographical Conventions in This Document
	SOSL Limits
	SOSL Limits on External Objects
	SOSL Syntax
	Example Text Searches
	convertCurrency()
	FIND {SearchQuery}
	FORMAT()
	IN SearchGroup
	LIMIT n
	OFFSET n
	ORDER BY Clause
	RETURNING FieldSpec
	toLabel(fields)
	Update an Article’s Keyword Tracking with SOSL
	Update an Article’s Viewstat with SOSL
	WHERE conditionExpression
	WITH DATA CATEGORY DataCategorySpec
	WITH DivisionFilter
	WITH METADATA
	WITH NETWORK NetworkIdSpec
	WITH PricebookId
	WITH SNIPPET

	Index

